精英家教网 > 高中数学 > 题目详情
16.已知点P(x,y)的坐标满足x2+y2-2y=0,则$u=\frac{y+1}{x}$的取值范围是(  )
A.$-\sqrt{3}≤u≤\sqrt{3}$B.$u≥\sqrt{3}$或$u≤-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}≤u≤\frac{{\sqrt{3}}}{3}$D.$u≥\frac{{\sqrt{3}}}{3}$或$u≤-\frac{{\sqrt{3}}}{3}$

分析 由题意得,点P(x,y)在圆C:x2+(y-1)2=1 上,而$u=\frac{y+1}{x}$表示圆上的点(x,y)与点M连线的斜率,如图,根据半径CA=1,MC=2,可得∠CMA=∠CMB=30°,可得MA的斜率和MB的斜率,从而求得μ的范围.

解答 解:由题意可得,点P(x,y)在圆C:x2+(y-1)2=1 上,而$u=\frac{y+1}{x}$表示圆上的点(x,y)与点M(0,-1)连线的斜率,
如图所示:
设MA MB和圆C相切,切点分别为A,B,由于半径CA=1,
MC=2,∴∠CMA=∠CMB=30°,
故MA的斜率为tan60°=$\sqrt{3}$,MB的斜率为tan(90°+30°)=-$\sqrt{3}$,
∴μ≥$\sqrt{3}$,或μ≤-$\sqrt{3}$,
故选:B.

点评 本题主要考查斜率公式、直线和圆的位置关系,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系中,有△ABC,且A(-3,0),B(3,0),顶点C到点A与点B的距离之差为4,则顶点C的轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.半径分别为5,6的两个圆相交于A,B两点,AB=8,且两个圆所在平面相互垂直,则它们的圆心距为$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“x>0,总有(x+1)ex>1”的否定是(  )
A.“x>0,使得(x+1)ex>1”B.“x>0,总有(x+1)ex≥1”
C.“x>0,使得(x+1)ex≤1”D.x>0,总有(x+1)ex<1”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC是等腰三角形,∠ABC=120°,以A、B为焦点且过点C的双曲线离心率为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两家网络公司,1993年的市场占有率均为A,根据市场分析与预测,甲、乙公司自1993年起逐年的市场占有率都有所增加,甲公司自1993年起逐年的市场占有率都比前一年多$\frac{A}{2}$,乙公司自1993年起逐年的市场占有率如图所示:
(I)求甲、乙公司第n年市场占有率的表达式;
(II)根据甲、乙两家公司所在地的市场规律,如果某公司的市场占有率不足另一公司市场占有率的20%,则该公司将被另一公司兼并,经计算,2012年之前,不会出现兼并局面,试问2012年是否会出现兼并局面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知“a∈R,则“a=2”是“复数z=(a2-a-2)+(a+1)i(i为虚数单位)为纯虚数”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=4x3+ax2+bx+5在(-∞,-1)和($\frac{3}{2}$,+∞)单调递增,在(-1,$\frac{3}{2}$)单调递减.
(1)求函数的解析式;
(2)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3且a3-a2≤2,A⊆S
(1)若n=6,求满足条件的集合A的个数;
(2)对任意的满足条件的n及A,求集合A的个数.

查看答案和解析>>

同步练习册答案