精英家教网 > 高中数学 > 题目详情

【题目】要制作一个容积为2π m3的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为 ( )

A. 0.5 m,1 m B. 1 m,1 m

C. 1 m,2 m D. 2 m,2 m

【答案】C

【解析】

设圆柱的底面半径r,高h容积为v,则v=πr2h,h=,要求用料最省即圆柱的表面积最小,由题意可得S=2πr2+2πrh,配凑基本不等式的形式,从而求最小值,从而可求高与底面半径之比,再由体积,即可得到所求.

设圆柱的底面半径r,高h,容积为v,

则v=πr2h,即有h=

用料为S=2πr2+2πrh=2π(r2+

=2π(r2++)≥2π3

=6π

当且仅当r2=,即r=时S最小即用料最省.

此时h==

=2,

又由2π=πr2h,解得h=2,r=1.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,a,b,c分别为内角A,B,C的对边,2asin A=(2b+c)sin B+(2c+b)sin C.

且sin B+sin C=1,则△ABC是(  )

A. 等腰钝角三角形 B. 等腰直角三角形 C. 钝角三角形 D. 直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.

(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数,).

(1)求函数的单调递增区间;

(2)若为整数,,且当时,恒成立,其中的导函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①函数y= 为奇函数;
②y=2 的值域是(1,+∞)
③函数y= 在定义域内是减函数;
④若函数f(2x)的定义域为[1,2],则函数y=f( )定义域为[4,8]
其中正确命题的序号是 . (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的定义域为(
A.(﹣∞,2)
B.(2,+∞)
C.(2,3)∪(3,+∞)
D.(2,4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点.

(1)求证:AB1⊥平面A1BD;

(2)求二面角AA1DB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3

4

5

6


2.5

3

4

4.5

1)请画出上表数据的散点图;并指出xy 是否线性相关;

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 ,当t=﹣1时,对应曲线C1上一点A,且点A关于原点的对称点为B.以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
(1)求A,B两点的极坐标;
(2)设P为曲线C2上的动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

同步练习册答案