精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中常数.

(1)若上单调递增,求的取值范围;

(2)令,将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象.区间满足:上至少含有30个零点.在所有满足上述条件的中,求的最小值.

【答案】(1);(2).

【解析】(1)因为函数y=f(x)在上单调递增,且

所以,且

所以.即的取值范围是.

(2)

的图象向左平移个单位,再向上平移1个单位后得到的图象,所以.

,得

所以两个相邻零点之间的距离为.

若b-a最小,则a和b都是零点,

此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](mN*)上分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]上恰有29个零点,

从而在区间(14π+a,b]上至少有一个零点,

所以.

另一方面,在区间上恰有30个零点,

因此,b-a的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,若 且f(x)在区间 上有最小值,无最大值,则ω的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.

(1)求椭圆的方程;

(2)过点且不垂直于轴的直线与椭圆交于两点,点关于轴的对称点为.证明:直线轴的交点为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5


(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程 = x+ ,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间? 参考公式:回归直线 =bx+a,其中b= = ,a= ﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率是,且直线 被椭圆截得的弦长为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与圆 相切:

(i)求圆的标准方程;

(ii)若直线过定点,与椭圆交于不同的两点,与圆交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2﹣4x+m=0有实根,命题q:﹣1≤m≤5.若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为(
A.( ﹣2,
B.( ﹣2, ]
C.( ﹣1]
D.( ﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+(2b﹣1)x+6b﹣a为偶函数,且f(x+1)﹣f(x)=2x+1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)+λx,求函数g(x)在[0,1]内的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项为正数的数列{an}的前n项和为Sn , 且满足:Sn= an2+ an+ (n∈N*
(1)求an
(2)设数列{ }的前n项和为Tn , 证明:对一切正整数n,都有Tn

查看答案和解析>>

同步练习册答案