【题目】已知函数
(1)当,求函数的单调区间;
(2)若有且只有一个实数解,求实数的取值范围.
【答案】(1)单调增区间为,的单调减区间为;(2)或.
【解析】
(1)先求定义域,再求导数,利用和,求得函数的单调区间;
(2)先求得,,,再分,,讨论,时,单调递增,根据零点存在定理是否存在唯一零点;时可直接代入判断;时,有极值,再构造函数,从而得到答案.
解:(1),定义域,
时,,,
∴的单调增区间为,的单调减区间为
(2),,
①时,恒成立,单调递增
,取且,则
唯一,使,符合题意
②时,,,∴无零点,与题意不符
③时,,,单调递减
,,单调递增
<1>,,有唯一零点,符合题意
<2>时,令,
由,∴在单调递减
由,∴
由,∴
∴,∴无零点,与题意不符
<3>,,由,∴
∴,使
设,由,∴单调递增
由,∴
∴
∴,
∴有2个零点,与题意不符
综上:或.
科目:高中数学 来源: 题型:
【题目】某医院为筛查某种疾病,需要检验血液是否为阳性,现有()份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将其中(且)份血液样本分别取样混合在一起检验.若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.
(2)现取其中(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为
(ⅰ)试运用概率统计的知识,若 ,试求关于的函数关系式;
(ⅱ)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.
参考数据:,,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________年.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列结论中:
①若向量共线,则向量所在的直线平行;
②若向量所在的直线为异面直线,则向量一定不共面;
③若三个向量两两共面,则向量共面;
④已知空间的三个向量,则对于空间的任意一个向量总存在实数x,y,z使得.
其中正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有( )
A.150种B.240种C.300种D.360种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.
(i)请将表格补充完整;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com