精英家教网 > 高中数学 > 题目详情
下列表中的对数值有且仅有一个是错误的:
x358915
lgx2a-ba+c3-3a-3c4a-2b3a-b+c+1
错误的一个的lgx的值应改正为
 
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的性质和运算法则求解.
解答: 解:假设lg3=2a-b,lg5=a+c,
则lg8=3lg2=3(1-lg5)=3[1-(a+c)]=3-3a-3c.
lg9=2lg3=2(2a-b)=4a-2b,
lg15=lg3+lg5
=(2a-b)+(a+c)=3a-b+c≠3a-b+c+1,
故lg15是错误的.lg15=3a-b+c;
故答案为:3a-b+c.
点评:本题考查对数值的求法,是基础题,解题时要注意对数性质和运算法则的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面内,设到定点F(0,2)和x轴距离之和为4的点P轨迹为曲线C,直线l过点F,交曲线C于M,N两点.
(1)说明曲线C的形状,并画出图形;
(2)求线段MN长度的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C的对边分别为a,b,c且sin2A-cosA=0.
(1)求角A的大小;
(2)若b=
3
,sinB=
3
sinC,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

条件p:
a+b
2
ab
,q:
a>0
b>0
,则p成立是q成立的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+2cosx=0,则sin2x+1=(  )
A、
6
5
B、
5
3
C、
4
3
D、
9
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x>1},B={x|0<x<2},则B∩∁RA等于(  )
A、{x|1<x<2}
B、{x|x≥1}
C、{x|0<x≤1}
D、{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数
a-i
1-2i
是纯虚数,则实数a的值为(  )
A、2
B、-
1
2
C、-2
D、-
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的定义域:y=(x-1) 
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程为
x=3+5cosθ
y=5sinθ
(θ是参数),P是曲线C与y轴正半轴的交点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,求经过点P与曲线C只有一个公共点的直线l的极坐标方程.

查看答案和解析>>

同步练习册答案