精英家教网 > 高中数学 > 题目详情

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

【答案】(117.5;(2)以80千米/小时的速度匀速行驶时耗油最少,最少为11.25.

【解析】试题分析:(I)当时,汽车从甲地到乙地行驶了小时,即可列出方程,求解结果;(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,根据题意列出函数关系式,利用导数得出函数的单调性,求解函数的最值,即可得到结论.

试题解析:(I)当x=40时,汽车从甲地到乙地行驶了小时,

要耗没(升).

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5

II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,

依题意得

,得

时, 是减函数;当时, 是增函数.

时, 取到极小值因为上只有一个极值,

所以它是最小值.

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, yi=184, =720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,b= ,a= ﹣b ,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题:p:关于x的不等式x22x4a0对一切xR恒成立;q:已知a0a±1,函数y=-|a|xR上是减函数,若pq为假命题,pq为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,且平面 .

(1)求证: 平面

(2)点在线段(含端点)上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数abcd满足a+b+c+d=3a2+2b2+4c2+4d2=5a的最大值为(

A.1 B.2 C.3 D..4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知AD=PD,PA=6,BC=8,DF=5,求证:

(1)直线PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;

(3)试预测加工10个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图

(1)求出表中的的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在的选取2名担任主要发言人.记这2名主要发言人年龄在的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为实数, 为自然对数的底数, .

(1)当 时,设函数的最小值为,求的最大值;

(2)若关于的方程在区间上有两个不同实数解,求的取值范围.

查看答案和解析>>

同步练习册答案