精英家教网 > 高中数学 > 题目详情
11.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:
 x 1 4 7 12
 y 229 244 241 196
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=-x2+ax+b,y=a•bx
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

分析 (1)由题意知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数,排除另2个函数,选二次函数模型进行描述;
(2)由二次函数的图象与性质,求出函数y=-x2+10x+220在x取何值时有最小值.

解答 解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数;
所以,应选取二次函数y=-x2+ax+b进行描述;
(2)将(1,229),(4,244)代入y=-x2+ax+b,解得a=10,b=220,
∴y=-x2+10x+220,1≤x≤12,x∈N+
y=-(x-5)2+245,∴x=5,ymax=245万元.

点评 本题考查了二次函数模型的应用,利用二次函数的图象与性质求函数的最值问题时,通常考虑对称轴是否在取值范围内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.调查某高中1000名学生的肥胖情况,得下表:
  偏瘦正常 肥胖 
 女生(人) 100173 
 男生(人) x177z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15
(Ⅰ)求x的值;
(Ⅱ)已知y≥195,z≥195,求肥胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足条件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$则z=x+y的最大值为(  )
A.0B.$\frac{5}{3}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a∈R,函数f(x)=x|x-a|+2x.
(1)若a=3,求函数f(x)在区间[0,4]上的最大值;
(2)若存在a∈(2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\frac{sinαcosα}{1-cos2α}$=1,tan(α-β)=$\frac{1}{3}$,则tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设一辆汽车在公路上做加速直线运动,假设t秒时的速度为v(t)=3t2-1米/秒,则在2秒是加速度为12米/秒2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列三个命题:
①若命题p:2是实数,命题q:2是奇数,则p或q为真命题;
②记函数f(x)是导函数为f′(x),若f′(x0)=0,则f(x0)是f(x)的极值;
③“a=3”是“直线l1::x+ay-3=0,l2:(a-1)x+2ay+1=0平行“的充要条件.
则真命题的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某高中共有2000名学生,其中各年级男生、女生的人数如表所示,已知在全校学生中随机抽取1人,抽到高二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则在高三年级中应抽取的学生人数是(  )
高一高二高三
女生373mn
男生377370p
A.8B.16C.28D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且2csinC=(2b+a)sinB+(2a-3b)sinA.
(1)求角C的大小;
(2)若c=4,求a+b的取值范围.

查看答案和解析>>

同步练习册答案