精英家教网 > 高中数学 > 题目详情
13.下列叙述错误的是(  )
A.若A∈l,B∈l,且A∈α,B∈α,则l?α
B.若直线 a∩b=A,则直线a与直线b能确定一个平面
C.任意三点A、B、C可以确定一个平面
D.若P∈α∩β且α∩β=l,则P∈l

分析 利用点线面的位置关系判断A的正误;两条直线的位置关系判断B的正误;平面的基本性质判断C的正误;平面的性质判断D 的正误;

解答 解:对于A,若A∈l,B∈l,且A∈α,B∈α,则l?α,满足直线与平面的基本性质,正确;
对于B,若直线 a∩b=A,则直线a与直线b能确定一个平面,满足两条相交直线确定唯一平面,正确;
对于C,任意三点A、B、C可以确定一个平面,当三点共线时,不能确定唯一平面,所以不正确;
对于D,若P∈α∩β且α∩β=l,则P∈l,满足两个平面相交的性质,正确;
故选:C.

点评 本题考查直线与平面的简单性质的应用,位置关系的判断,命题的真假的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知公差d≠0的等差数列{an}满足a1=2,且a1,a2,a5成等比数列
(Ⅰ)求数列{an}的通项公式
(Ⅱ)记Sn为数列{an}的前n项和,求使得Sn>60n+800成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex+x-5.,则f(x)的零点所在区间为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为假命题
B.“x>3”是“x>2”的必要不充分条件
C.命题“p或q”为真命题,¬p为真,则命题q为假命题
D.命题“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=2,$\frac{3}{2}$cos2B+5cosB-$\frac{1}{2}$=0,且点D在线段BC上.
(1)若∠ADC=$\frac{3π}{4}$,求AD的长;
(2)若BD=2DC,$\frac{sin∠BAD}{sin∠CAD}$=4$\sqrt{2}$,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行六面体ABCD-A1B1C1中,模与向量$\overrightarrow{{A_1}{B_1}}$的模相等的向量有(  )
A.7个B.3个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(α)=$\frac{sin(2π-α)cos(\frac{π}{2}+α)}{cos(-\frac{π}{2}+α)tan(π+α)}$,则f($\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一质点做直线运动,在x(单位:s)时离出发点的距离(单位:m)为f(x)=$\frac{2}{3}$x3+x2+2x.
(1)求质点在第1s内的平均速度;
(2)求质点在第1s末的瞬时速度;
(3)经过多长时间质点的运动速度达到14m/s?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a2x-2ax+1+2(a>0,a≠1)的定义域为x∈[-1,+∞)
(1)若a=2,求y=f(x)的最小值;
(2)当0<a<1时,若至少存在x0∈[-2,-1]使得f(x0)≤3成立,求a的取值范围.

查看答案和解析>>

同步练习册答案