精英家教网 > 高中数学 > 题目详情
9.三个数$a={0.5^{1.5}},b={log_2}0.5,c={2^{0.3}}$之间的大小关系是(  )
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

分析 判断三个数与0,1的大小关系,即可得到结果.

解答 解:∵$a=0.{5}^{1.5}∈(0,1),b=lo{g}_{2}0.5<0,c={2}^{0.3}>1$,
∴b<a<c.
故选:C.

点评 本题考查数值大小的比较,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+b}{x}$(b为常数).
(Ⅰ)当f(1)=f(4),函数F(x)=f(x)-k有且仅有一个零点x0,且x0>0时,求k的值;
(Ⅱ)若b<0,用定义证明函数y=f(x)在区间(0,+∞)上为单调递增函数.
(Ⅱ)若b>0,当x∈[1,3]时不等式f(x)≥2恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列曲线的标准方程:
(1)两个焦点的坐标分别是(0,-6),(0,6),且双曲线过点A(-5,6),求双曲线的标准方程;
(2)求以原点为顶点,以坐标轴为对称轴,且焦点在直线3x-4y-12=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.F1、F2是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{7}$=1的两个焦点,A为椭圆上一点,且∠F1AF2=60°,则△F1AF2的面积为$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,G为△ABC的重心,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BG}$=(  )
A.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$B.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$C.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正六棱锥体积为$2\sqrt{3}$,底面边长为2,则其侧面积为(  )
A.12B.6C.18D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;   
(2)求x∈[-1,m]的值域;
(3)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设球半径以2cm/s的速度膨胀,当半径为5cm时,体积对时间的变化率是200πcm3/s.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(1-x)=1+x,则f(x)=2-x.

查看答案和解析>>

同步练习册答案