精英家教网 > 高中数学 > 题目详情

【题目】已知函数().

1)若,求函数的单调区间;

2)当时,若函数上的最大值和最小值的和为1,求实数的值.

【答案】1)答案见解析.(2

【解析】

1)利用的导函数,求得的单调区间.

2)利用的导函数,求得的单调区间,对分成三种情况进行分类讨论,结合在区间上最大值和最小的和为,求得实数的值.

1)当a=3时,f(x)=2x33x2+1,xR,

f'(x)=6x26x=6x(x1),

f'(x)>0得,x<0x>1;令f'(x)<0得,0<x<1,

∴函数f(x)的的单调增区间为(﹣∞,0)和(1,+∞),单调递减区间为(0,1),

2)函数f(x)=2x3ax2+1,a>0,

f'(x)=6x22ax=2x(3xa),

f'(x)=0得,x=0,

列表:

x

(﹣∞,0)

0

(0,)

(,+∞)

f'(x)

+

0

0

+

f(x)

递增

极大值

递减

极小值

递增

①当0<a2时,0,

∴函数f(x)在[﹣1,0]上单调递增,在[0,]上单调递减,在[,1]上单调递增,

又∵f(﹣1)=﹣1a,f(0)=1,f1)=3a1,f()=1,且0<f()<1,

f(x)max=f1)=3a,f(x)min=f(﹣1)=﹣1a,

∴(3a)+(﹣1a)=1,

a,

②当2<a<3时,0,

∴函数f(x)在[﹣1,0]上单调递增,在[0,]上单调递减,在[,1]上单调递增,

又∵f(﹣1)=﹣1a,f(0)=1,f1)=3a,f()=1,且0<f()<1,0<f1)<1,

f(x)max=f(0)=1,f(x)min=f(﹣1)=﹣1a,

1+(﹣1a)=1,

a=﹣1,不符合题意,舍去,

③当a3时,,

∴函数f(x)在[﹣1,0]上单调递增,在[0,1]上单调递减,

f(x)max=f(0)=1,

又∵f(﹣1)=﹣1a,f1)=3a,∴f(x)min=f(﹣1)=﹣1a,

1+(﹣1a)=1,

a=﹣1,不符合题意,舍去,

综上所述,若函数f(x)在[﹣1,1]上的最大值和最小值的和为1,实数a的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300.设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

1)若一盘游戏中仅出现一次音乐的概率为,求的最大值点

2)以(1)中确定的作为的值,玩3盘游戏,出现音乐的盘数为随机变量,求每盘游戏出现音乐的概率,及随机变量的期望

3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若的两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集为{x|x≤1},求实数a的值;

2)证明:fx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,短轴长为2,过定点的直线交椭圆于不同的两点(点在点之间).

1)求椭圆的方程;

2)若,求实数的取值范围;

3)若射线交椭圆于点为原点),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是曲线为参数)上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将线段顺时针旋转得到,设点的轨迹为曲线

1)求曲线的极坐标方程;

2)在极坐标系中,点的坐标为,射线与曲线分别交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

同步练习册答案