精英家教网 > 高中数学 > 题目详情

(13分)已知,数列满足

      (Ⅰ)求证:数列是等比数列;

(Ⅱ)当n取何值时,取最大值,并求出最大值;

(III)若对任意恒成立,求实数的取值范围.

解析:(I)∵

        ∴

        即

        又,可知对任何

所以.……………………………2分

        ∵

      ∴是以为首项,公比为的等比数列.………4分

    (II)由(I)可知=  ().

        ∴

        .……………………………5分

         当n=7时,

         当n<7时,

         当n>7时,

∴当n=7或n=8时,取最大值,最大值为.……8分

  (III)由,得       (*)

        依题意(*)式对任意恒成立,

        ①当t=0时,(*)式显然不成立,因此t=0不合题意.…………9分

     ②当t<0时,由,可知).

      而当m是偶数时,因此t<0不合题意.…………10分

     ③当t>0时,由),

 ∴.    ()……11分

      设     (

      ∵ =,

      ∴

      ∴的最大值为

      所以实数的取值范围是.…………………………………13分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)已知函数f (x)=2n在[0,+上最小值是an∈N*).

(1)求数列{a}的通项公式;(2)已知数列{b}中,对任意n∈N*都有ba =1成立,设S为数列{b}的前n项和,证明:2S<1;(3)在点列A(2n,a)中是否存在两点A,A(i,j∈N*),使直线AA的斜率为1?若存在,求出所有的数对(i,j);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

科目:高中数学 来源:2011届福建省厦门外国语学校高三上学期11月月考理科数学卷 题型:解答题

(本小题满分13分)已知数列,定义其倒均数是
(1)求数列{}的倒均数是,求数列{}的通项公式
(2)设等比数列的首项为-1,公比为,其倒数均为,若存在正整数k,使恒成立,试求k的最小值。

查看答案和解析>>

科目:高中数学 来源:2014届湖北武汉部分重点中学高二上学期期末考试文科数学卷(解析版) 题型:解答题

(本小题13分)已知关于x的一元二次函数,分别从集合PQ中随机取一个数ab得到数列

(1)若,列举出所有的数对,并求函数有零点的概率;

(2)若,求函数在区间上是增函数的概率。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市西城区高三上学期期末考试文科数学试卷 题型:解答题

(本小题满分13分)已知数列.如果数列满足,其中,则称的“衍生数列”.

(Ⅰ)写出数列的“衍生数列”

(Ⅱ)若为偶数,且的“衍生数列”是,证明:

(Ⅲ)若为奇数,且的“衍生数列”是的“衍生数列”是,….依次将数

,…的首项取出,构成数列.证明:是等差数列.

 

查看答案和解析>>

同步练习册答案