精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当时,求函数 的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

(Ⅲ)求证: 是自然对数的底数).

【答案】(Ⅰ)单调递增区间为,单调递减区间为;(Ⅱ); (Ⅲ)见解析.

【解析】分析:(Ⅰ)求出函数的导数,分别解不等式,可求得的增区间和减区间.

(Ⅱ)构建新函数, 不等式上恒成立等价于恒成立,而,分三种情形讨论可得实数的取值范围为.

(Ⅲ)由(Ⅱ)得不等式 ,故有,利用累加及其裂项相消法可以得到: ,化简后可得到要证明的不等式.

详解:(Ⅰ)当时,

.

解得,由解得

故函数的单调递增区间为,单调递减区间为

(Ⅱ)因当时,不等式恒成立,即恒成立.

,只需即可.

,

(ⅰ)当时,

时, ,函数上单调递减,

成立;

(ⅱ)当时,由,因,所以

①若,即时,在区间上, ,则函数上单调递增, 上无最大值;

②若,即时,函数上单调递减,在区间上单调递增,同样上无最大值,不满足条件;

(ⅲ)当时,由,∵,∴

,故函数上单调递减,故成立.

综上所述,实数的取值范围是.

(Ⅲ)据(Ⅱ)知当时, 上恒成立,又

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某种药物在血液中以每小时的比例衰减,现给某病人静脉注射了该药物2500mg,设经过x个小时后,药物在病人血液中的量为ymg

x的关系式为______

当该药物在病人血液中的量保持在1500mg以上,才有疗效;而低于500mg,病人就有危险,要使病人没有危险,再次注射该药物的时间不能超过______小时精确到

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在圆x2+y2﹣4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(
A.
B.6
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且过定点M(1, ).
(1)求椭圆C的方程;
(2)已知直线l:y=kx﹣ (k∈R)与椭圆C交于A、B两点,试问在y轴上是否存在定点P,使得以弦AB为直径的圆恒过P点?若存在,求出P点的坐标和△PAB的面积的最大值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线l的参数方程 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数上为增函数,求正实数的取值范围;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).

(1)将V表示成r的函数V(r),并求该函数的定义域;

(2)讨论函数V(r)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题是  

A. 任意三点确定一个平面

B. 三条平行直线最多确定一个平面

C. 不同的两条直线均垂直于同一个平面,则这两条直线平行

D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题:

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

垂直于同一直线的两条直线相互平行;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是  

A. B. C. D.

查看答案和解析>>

同步练习册答案