精英家教网 > 高中数学 > 题目详情
已知函数
(1)若x∈R,求函数f(x)的单调区间;
(2)在答题卡所示的坐标系中画出函数f(x)在区间[0,π]上的图象.
【答案】分析:把函数解析式第一项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,去括号合并后,再利用二倍角的余弦函数公式化简,最后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,
(1)由正弦函数的单调区间分别列出关于x的不等式,求出不等式的解集即可得到函数的单调区间;
(2)根据函数解析式画出函数图象,如图所示.
解答:解:
=
=
(1)由,k∈Z,
,k∈Z,
所以函数的单调增区间为,k∈Z,
单调减区间为,k∈Z;
(2)根据题意画出函数图象,如图所示:

点评:此题考查了两角和与差的正弦、余弦函数公式,二倍角的余弦函数公式,正弦函数的单调性及正弦函数的图象与性质,其中利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

()已知函数.(1)若x∈R,求fx)的单调递增区间;          (2)若x∈[0,]时,fx)的最大值为4,求a的值,并指出这时x的值

查看答案和解析>>

科目:高中数学 来源:2012年北京市昌平区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,
(i)求f(x)在区间[-2,4]上的最大值;
(ii)求函数G(x)=[f'(x)+(m+2)x+m]e-x(m∈R)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省深圳市五校高三联考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)设,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二下学期第一学段考试理科数学试卷(解析版) 题型:解答题

已知函数

(1)若x=1时取得极值,求实数的值;

(2)当时,求上的最小值;

(3)若对任意,直线都不是曲线的切线,求实数的取值范围。

 

查看答案和解析>>

同步练习册答案