精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 

(Ⅰ)1证明两角和的余弦公式

      2由推导两角和的正弦公式.

(Ⅱ)已知,求

解:(1)①如图,在执教坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.

则P1(1,0),P2(cosα,sinα)

P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β))

由P1P3=P2P4及两点间的距离公式,得

[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2

展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)

∴cos(α+β)=cosαcosβ-sinαsinβ.……………………4分 

②由①易得cos(-α)=sinα,sin(-α)=cosα

sin(α+β)=cos[-(α+β)]=cos[(-α)+(-β)]

           =cos(-α)cos(-β)-sin(-α)sin(-β)

           =sinαcosβ+cosαsinβ……………………………………6分

(2)∵α∈(π,),cosα=-

   ∴sinα=-

   ∵β∈(,π),tanβ=-

   ∴cosβ=-,sinβ=

   cos(α+β)=cosαcosβ-sinαsinβ

              =(-)×(-)-(- 

              =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案