精英家教网 > 高中数学 > 题目详情
1.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE:EB=AF:FD=1:4,又H,G分别是BC,CD的中点,则(  )
A.BD∥平面EFG,且四边形EFGH是平行四边形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是平行四边形
D.EH∥平面ADC,且四边形EFGH是梯形

分析 画出图形,根据条件便可得到EF∥HG,且EF≠HG,从而说明四边形EFGH为梯形,而由条件知EF∥BD,从而根据线面平行的判定定理即可得出EF∥平面BCD,这样便可找出正确选项.

解答 解:如图,
由条件知,EF∥BD,$EF=\frac{1}{5}BD$,GH∥BD,且$HG=\frac{1}{2}BD$;
∴EF∥HG,且$EF=\frac{2}{5}HG$;
∴四边形EFGH为梯形;
EF∥BD,EF?平面BCD,BD?平面BCD;
∴EF∥平面BCD;
若EH∥平面ADC,则EH∥FG,显然EH不平行FG;
∴EH不平行平面ADC;
∴选项B正确.
故选:B.

点评 考查平行线分线段成比例定理,中位线的性质,以及相似三角形对应边的比例关系,梯形的定义,线面平行的判定定理及性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)=ax2+bx+c(a,b,c∈R),且f(1)=-$\frac{a}{2}$,a>2c>b.
(1)判断ab的符号.
(2)证明f(x)=0至少有一个实根在区间(0,2)内.
(3)求函数y=f(x)的图象被x轴所截的弦长取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=x(2014-lnx),若f′(x0)=2013,则x0=(  )
A.1B.ln2C.$\frac{1}{e}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,函数y=cosx+|x|的图象经过矩形ABCD的顶点C,D.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A,B,C,D是空间中的四个不同的点,则下列说法错误的是(  )
A.若AC与BD共面,则AD与BC也共面
B.若AC与BD是异面直线,则AD与BC也是异面直线
C.若AC与BD是相交直线,则AD与BC也是相交直线
D.若A,B,C,D不共面,则AC与BD既不平行也不相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直平行六面体的侧棱长是100cm,底面相邻边长分别为23cm和11cm,底面的两条对角线的比是2:3,求它的两个对角面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若直线L:y=kx-2交抛物线y2=8x于A、B两点,且AB的中点为M(2,y0),求y0及弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+cos2x(x∈R).
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合、对称轴、对称中心和单调递增区间;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{6},\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义域为(0,+∞)上的减函数,且满足f(x+y)=f(x)+f(y)(x,y∈(0,+∞)),f(2)=1
(1)求f(1);
(2)求满足f(x)+f(x-3)≤2的x的取值范围.

查看答案和解析>>

同步练习册答案