精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=[f(x)-m]•ex,若函数g(x)在x∈[-3,2]上单调,求实数m的取值范围.

解:(Ⅰ)∵二次函数f(x)=ax2+bx,f(x-1)为偶函数,
∴f(x)的对称轴为x=-1,∴
∵集合A={x|f(x)=x}为单元素集合
∴f(x)=x有两个相等的实数根
∴ax2+(b-1)x=0,∴b=1


∴f(x)的解析式为f(x)=x2+x;
(Ⅱ)g(x)=(x2+x-m)•ex
若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立
即(x2+2x+1-m)•ex≥0对x∈[-3,2]上恒成立
∴m≤(x2+2x+1)min(x∈[-3,2])
∴m≤-1
若函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立
即(x2+2x+1-m)•ex≤0对x∈[-3,2]上恒成立
∴m≥(x2+2x+1)max(x∈[-3,2])
∴m≥7
∴实数m的取值范围为(-∞,-1]∪[7,+∞).
分析:(Ⅰ)根据二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合,可得f(x)的对称轴为x=-1,f(x)=x有两个相等的实数根,由此可求f(x)的解析式;
(Ⅱ)g(x)=(x2+x-m)•ex,分类讨论:若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立;函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立,再分离参数即可求得实数m的取值范围.
点评:本题主要考查二次函数、函数的单调性,考查利用函数单调性求参数取值范围的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案