精英家教网 > 高中数学 > 题目详情

【题目】已知,函数.

(1)求的定义域及其零点;

(2)讨论并用函数单调性定义证明函数在定义域上的单调性;

(3)设,当时,若对任意,存在,使得,求实数的取值范围.

【答案】(1) 定义域,函数的零点为-1;(2)见解析;(3) .

【解析】试题分析:(1)由题意知,解不等式可得定义域,可得解析式,易得零点;(2)设 内的任意两个不相等的实数,且,可得,分类讨论可得;3要满足题意只需,易得,由二次函数分类讨论可得解关于的不等式可得.

试题解析:(1)由题意知, ,解得.

∴函数定义域.

,得,解得,故函数的零点为.

2)设 内的任意两个不相等的实数,且,则

.

,即

∴当时, ,故上单调递减,当时, ,故上单调递增.

3)若对于任意,存在,使得成立,只需.

由(2)知当时, 上单调递增,则.

时, 成立;

时, 上单调递增, ,由,解得.

时, 上单调递减, ,由,解得.

综上,满足条件的的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)已知当时,不等式恒成立,求实数的取值范围

(2)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在 ,使得对任意的 ,都有f(x1)≤g(x2)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,an+1=2﹣ (n=1,2,3,…).
(Ⅰ)求a2 , a3 , a4的值,猜想出数列的通项公式an
(Ⅱ)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.如图在三棱锥V-ABCVO⊥平面ABCO∈CDVA=VBAD=BD则下列结论中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若对x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求的值

(Ⅱ)求函数的值域

(Ⅲ)当 恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数 的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移 个单位长度,得到图象的函数解析式为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列给出的输入语句、输出语句和赋值语句:

1输出语句INPUT ,b,c

2输入语句INPUT =3

3赋值语句3=A

4赋值语句A=B=C

则其中正确的个数是( )

A0B1C2D3

查看答案和解析>>

同步练习册答案