精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12分设各项均为正数的等比数列

1求数列的通项公式;

2求证:

3是否存在正整数使得对任意正整数均成立?若存在求出的最大值若不存在说明理由

【答案】123的最大值为4

【解析】

试题分析:1设出等比数列的公比运用等比数列的通项公式解得首项和公比再由对数的运算性质即可得通项公式

本题是求数列的前项和的范围求和方法有很多种本题中运用累加法求得再由错位相减法求和即可得证

3假设存在正整数判断其单调性进而得到最小值解不等式即可得出的取值范围

试题解析:1设数列的公比为

由题意有

2

相减整理得:

3

数列单调递增

由不等式恒成立得:

故存在正整数使不等式恒成立的最大值为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,F分别为ABPC的中点.

(I)若四棱锥P-ABCD的体积为4,求PA的长;

(II)求证:PEBC

(III)求PC与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.

(1)求甲抽到判断题,乙抽到选择题的概率是多少;

(2)求甲、乙两人中至少有一人抽到选择题的概率是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 =1(a>b>0),F1 , F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且 =2 ,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:其中正确命题的序号是
①设a,b是非零实数,若a<b,则ab2<a2b;
②若a<b<0,则
③函数y= 的最小值是2;
④若x,y是正数, + =1,则x+2y的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小朋友按如下规则练习数数,大拇指,食指,中指,无名指,小指,无名指,中指,食指,大拇指,食指,,一直数到时,对应的指头是( )

A. 小指 B. 中指 C. 食指 D. 无名指

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的个数是( )

若正实数满足,则的最小值是16;

已知,则函数的最大值为

已知,且,则的最小值是36;

若对任意实数,不等式恒成立,则实数的取值范围是

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面 是平行四边形,侧面 底面 分别为 的中点, .

(1)求证: 平面
(2)求证:平面 平面 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 底面 为菱形,平面 平面 , , , , 的中点.

(1)证明:
(2)二面角 的余弦值.

查看答案和解析>>

同步练习册答案