精英家教网 > 高中数学 > 题目详情

【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )

A. B. C. D.

【答案】C

【解析】

外接圆的圆心为,则平面,所以,设外接圆的半径为,利用正弦定理即可求得:,再利用截面圆的性质可列方程:,即可求得,即可求得点到平面的距离的最大值为,利用余弦定理及基本不等式即可求得:,再利用锥体体积公式计算即可得解。

外接圆的圆心为,则平面,所以

外接圆的半径为

由正弦定理可得:,解得:

由球的截面圆性质可得:,解得:

所以点到平面的距离的最大值为:.

中,由余弦定理可得:

当且仅当时,等号成立,所以.

所以,当且仅当时,等号成立.

当三棱锥的底面面积最大,高最大时,其体积最大.

所以三棱锥的体积的最大值为

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年5月,“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2017年末,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.5元,2.1元,3.3元,5.9元,4.7元,商家从这5名顾客中随机抽取3人赠送台历.

(1)求获得台历的三人中至少有一人的红包超过5元的概率;

(2)统计一周内每天使用支付宝付款的人数与商家每天的净利润元,得到7组数据,如表所示,并作出了散点图.

(i)直接根据散点图判断, 哪一个适合作为每天的净利润的回归方程类型.(的值取整数)

(ii)根据(i)的判断,建立关于的回归方程,并估计使用支付宝付款的人数增加到35时,商家当天的净利润.

参考数据:

22.86

194.29

268.86

3484.29

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;

(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆的中心为坐标原点,焦点轴上,且在抛物线的准线上,点是椭圆上的一个动点,面积的最大值为.

1)求椭圆的方程;

2)过焦点作两条平行直线分别交椭圆四个点.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为抛物线外一点,过点作抛物线的两条切线,切点分别为

(Ⅰ)若点,求直线的方程;

(Ⅱ)若点为圆上的点,记两切线的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下列四个命题中真命题的序号是(

(1)是偶函数;(2)当且仅当时,有最小值;

(3)上是增函数;(4)方程有无数个实根.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足

1)设,证明是等差数列;

2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数,在某一周期内的图象时,列表并填入了部分数据,如下表:

0

x

0

2

0

0

1)请将上表数据补充完整,并求函数的解析式;

2)求函数的单调递增区间;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案