精英家教网 > 高中数学 > 题目详情
已知全集U=R,A={x|log2(3-x)≤2},B={x|
ax+2
≥1.a∈R}

(Ⅰ)求集合A和B;
(Ⅱ)若(CUA)∪B=CUA,求实数a的取值范围.
分析:(Ⅰ)解对数不等式求出集合A,解分式不等式求出集合B.
(Ⅱ)由题意可得 B⊆CUA,讨论区间的端点间的大小关系,求得实数a的取值范围.
解答:解:(Ⅰ)由已知得:log2(3-x)≤log24,
3-x≤4
3-x>0

解得-1≤x<3,∴A={x|-1≤x<3}.
a
x+2
≥1
 即
a-x-2
x+2
≥0
x-(a-2)
x+2
≤ 0

当 a-2>-2,即a>0时,B=(-2,a-2],
当 a-2=-2,即a=0时,B=∅,
当 a-2<-2,即a<0时,B=[a-2,2).
(Ⅱ)由(CUA)∪B=CUA得 B⊆CUA,∵CUA={x|x<-1或x≥3},
当a>0时,由B⊆CUA 可得a-2<-1,故有 0<a<1.
当a=0时,B=∅,显然满足B⊆CUA.
当a<0时,B=[a-2,2),不满足B⊆CUA.
综上,当 0≤a<1 时,(CUA)∪B=CUA成立,
故实数a的取值范围是[0,1).
点评:本题主要考查对数不等式的解法,分式不等式的解法,集合中参数的取值问题,体现了化归与转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U=R,A={x|-2≤x≤4},集合B={x|x≤1或x>5}
求(1)A∩B
  (2)?U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(?UA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|-3<x≤6,x∈R},B={x|x2-5x-6<0,x∈R}.
求:
(1)A∪B;
(2)(?UB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知全集U=R,A={x|x2-2x<0},B={x|log2x+1≥0},则A∩(?UB)=
(0,
1
2
(0,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x≤1或x≥2},B={x|a<x<a+2}.
(1)若a=1,求(?UA)∩B;       
(2)若(?UA)∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案