精英家教网 > 高中数学 > 题目详情
从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,,求椭圆的方程
本题主要考查根据椭圆的性质求椭圆的标准方程,关键是找三个含a,b,c的等式,联立解方程组。
欲求椭圆方程,只需求出a,b的值即可,因为过点P向x轴作垂线,垂足恰为左焦点F1,所以F1O=c,由AB∥OP,可得,
△  PF1O与△BOA相似,所以PF1:F1O ="BO" :OA ,就此可得到一个含a,b,c的等式,因为,|F1A|=" 10" + 5 ,所以a+c=" 10" + 5 ,又得到一个含a,b,c的等式,再根据椭圆中,a2=b2+c2,就可解出a,b,c,得到椭圆的标准方程.
解:x

解得:
椭圆方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的左、右顶点,直线轴交于点,点是椭圆上异于
的动点,直线分别交直线两点.证明:恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆过抛物线的焦点,且与双曲线有相同的焦点,则该椭圆的方程为:        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点P到两点的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.  (Ⅰ)写出C的方程;(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分15分)椭圆离心率为,且过点.
椭圆
已知直线与椭圆交于A、B两点,与轴交于点,若
求抛物线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点.若原点在以线段为直径的圆内,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)在平面直角坐标系xOy中,点P到两点的距离之和等于4,设点P的轨迹为C。
(1)求出C的轨迹方程;
(2)设直线与C交于A、B两点,k为何值时?       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:
①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;
②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(     )
A.①③④B.①②③C.③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的焦点是,又过点
(1)求椭圆的离心率;
(2)又设点在这个椭圆上,且,求的余弦的大小.

查看答案和解析>>

同步练习册答案