精英家教网 > 高中数学 > 题目详情
7.某校从8名教师中选派4名教师去4个边远地区支教,每地1人,其中甲和乙不能同去,甲与丙同去或者同不去,则不同的选派方案的种数是(  )
A.240B.360C.540D.600

分析 先从8名教师中选出4名,因为甲和乙不同去,甲和丙只能同去或同不去,所以可按选甲和不选甲分成两类,两类方法数相加,再把四名老师分配去4个边远地区支教,四名教师进行全排列即可,最后,两步方法数相乘.

解答 解:分两步,
第一步,先选四名老师,又分两类
第一类,甲去,则丙一定去,乙一定不去,有C52=10种不同选法
第二类,甲不去,则丙一定不去,乙可能去也可能不去,有C64=15种不同选法
∴不同的选法有10+15=25种
第二步,四名老师去4个边远地区支教,有A44=24
最后,两步方法数相乘,得,25×24=600
故选:D.

点评 本题考查了排列组合的综合应用,做题时候要分清用排列还是用组合去做.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.命题“?x∈R,sinx>0”的否定是(  )
A.?x∈R,sinx<0B.?x∈R,sinx≤0C.?x∈R,sinx≤0D.?x∈R,sinx<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知幂函数y=f(x)的图象经过点($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),则f($\frac{1}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\sqrt{1-x}$+lg(3x+1)的定义域是(  )
A.(-∞,$-\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.($-\frac{1}{3}$,1]D.($-\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y有如表中的观察数据,得到y对x的回归方程是$\widehaty=0.83x+a$,则其中a的值是(  )
x0134
y2.44.54.66.5
A.2.64B.2.84C.3.95D.4.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l过点A(-1,0)且与⊙B:x2+y2-2x=0相切于点D,以坐标轴为对称轴的双曲线E过点D,一条渐进线平行于l,则E的方程为(  )
A.$\frac{3{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{2}$-$\frac{3{y}^{2}}{2}$=1C.$\frac{5{y}^{2}}{3}$-x2=1D.$\frac{3{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2在P(1,1)处的切线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行,则双曲线的离心率是(  )
A.5B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(x+$\frac{π}{6}$)-tanα•cosx,且f($\frac{π}{3}$)=$\frac{1}{2}$.
(1)求tanα的值;
(2)求函数g(x)=f(x)+cosx的对称轴与对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个关于圆锥曲线的命题,正确的是(  )
①从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
②已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
③关于x的方程x2-mx+1=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线$\frac{{x}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1有共同的焦点.
A.①②B.①③C.②③D.②④

查看答案和解析>>

同步练习册答案