精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: + =1(a>b>0)的焦点为F1 , F2 , 离心率为 ,点P为其上动点,且三角形PF1F2的面积最大值为 ,O为坐标原点.
(1)求椭圆C的方程;
(2)若点M,N为C上的两个动点,求常数m,使 =m时,点O到直线MN的距离为定值,求这个定值.

【答案】
(1)

解:由题意可知椭圆的离心率e= = ,则a=2c,

当P位于短轴的端点时,△PF1F2的面积最大,即 ×2c×b= ,bc=

由a2=b2+c2,则a=2,b= ,c=1,

∴椭圆的标准方程:


(2)

解:设M(x1,y1)、N(x2,y2), =x1x2+y1y2=m,

当直线MN到斜率存在时,设其方程:y=kx+b,

则点O到直线MN的距离d=

,整理得:(4k2+3)x2+8kbx+4b2﹣12=0,

由△>0,整理得:4k2﹣b2+3>0,

由x1+x2=﹣ ,x1x2=

则x1x2+(kx1+b)(kx2+b)=(k2+1)x1x2+kb(x1+x2)+b2=m,

整理得:7× =12+ ,为常数,则m=0,d= =

此时7× =12,满足△>0,

当MN⊥x轴时,m=0,整理得kOM=±1,

,则x2=

则d=丨x丨= ,亦成立,

综上可知:m=0,d=


【解析】(1)由题意可知:由椭圆的离心率e= ,则a=2c,当P位于短轴的端点时,△PF1F2的面积最大,在bc= 及a2=b2+c2 , 即可求得a和b的值,即可求得椭圆方程;(2)分类讨论,当直线MN的斜率存在时,设其方程,代入椭圆方程,根据点到直线的距离公式,韦达定理及向量数量积的坐标运算,要使7× =12+ ,为常数,则m=0,d= = ,当直线的斜率不存在时,d=丨x丨= ,亦成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1),a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x2)≥( ﹣1)x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:

A类

B类

C类

男生

18

x

3

女生

10

8

y


(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;

男生

女生

总计

A类

B类和C类

总计


(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率. 附:K2=

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸处发现北偏东方向,距海里的处有一艘走私船.处北偏西方向,距海里的处的我方缉私船奉命以海里小时的速度追截走私船,此时走私船正以海里小时的速度从处向北偏东方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=sin(2x﹣ )的图象向左平移 个单位后,得到y=g(x)的图象,则下列说法错误的是(
A.y=g(x)的最小正周期为π
B.y=g(x)的图象关于直线x= 对称
C.y=g(x)在[﹣ ]上单调递增
D.y=g(x)的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年发现这一规律的,比杨辉要迟年,比贾宪迟年。如图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。如图所示,在杨辉三角中,从1开始箭头所指的数组成一个锯齿形数列:,则此数列前项和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子产品公司前四年的年宣传费x(单位:千万元)与年销售量y(单位:百万部)的数据如下表所示:

x(单位:千万元)

1

2

3

4

y(单位:百万部)

3

5

6

9

可以求y关于x的线性回归方程为 =1.9x+1.
参考公式:回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为:
= =
(1)该公司下一年准备投入10千万元的宣传费,根据所求得的回归方程预测下一年的销售量m:
(2)根据下表所示五个散点数据,求出y关于x的线性回归方程 = x+

x(单位:千万元)

1

2

3

4

10

y(单位:百万部)

3

5

6

9

m

并利用小二乘法的原理说明 = x+ =1.9x+1的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为 米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

同步练习册答案