精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线ba0),O为坐标原点,离心率,点在双曲线上.

1)求双曲线的方程;

2)若直线与双曲线交于PQ两点,且.|OP|2+|OQ|2的最小值.

【答案】1 2.

【解析】试题分析:

() 可得故双曲线方程为,代入点的坐标可得由此可得双曲线方程 ()根据直线的斜率存在与否分两种情况求解当斜率存在时,可根据一元二次方程根与系数的关系及两点间的距离公式求解即可当斜率不存在时直接计算可得结果

试题解析:

1可得

双曲线方程为

在双曲线上

解得

双曲线的方程为

2)①当直线的斜率存在时,设直线的方程为

消去y整理得

∵直线与双曲线交于两点,

得到:

化简得

时上式取等号,且方程(*)有解.

②当直线的斜率不存在时,设直线的方程为,则有

可得

可得解得.

综上可得的最小值是24

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间.

)当时,求函数在区间上的最小值.

)在条件()下,当最小值为时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线l的参数方程为 (t为参数)在极坐标系与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴中,曲线C的方程为

(Ⅰ)求曲线C的直角坐标方程;

(Ⅱ)设曲线C与直线l交于点AB,若点P的坐标为(1,1),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,f(x)=log2(1+ax).

(1)求f(x2)的值域;

(2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一个元素,求实数a的取值范围;

(3)当a>0时,对任意的t∈(,+∞),f(x2)在[t,t+1]的最大值与最小值的差不超过4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆汽车在某段路程中的行驶速度与时间的关系如下图:

(Ⅰ)求图中阴影部分的面积,并说明所求面积的实际意义;

(Ⅱ)假设这辆汽车的里程表在汽车行驶这段路程前的读数为,试将汽车行驶这段路程时汽车里程表读数表示为时间的函数,并求出当汽车里程表读数为时,汽车行驶了多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某民营企业生产两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图甲,产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).

(1)分别将两种产品的利润表示为投资(万元)的函数关系式;

(2)该企业已筹集到10万元资金,并全部投入两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与曲线满足下列两个条件:()直线在点处与曲线相切; ()曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列命题正确的是__________.(写出所有正确命题的编号)

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

查看答案和解析>>

同步练习册答案