精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg )的x的取值范围是

【答案】(0,1)∪(100,+∞)
【解析】解:∵函数f(x)是定义在R上的偶函数,∴f(1)<f(lg )=f(|lg |)

∵函数f(x)在区间[0,+∞)上单调递增,∴|lg |>1,即lg >1或lg <﹣1解得:x>100或0<x<1

所以满足不等式f(1)<f(lg )的x的取值范围是(0,1)∪(100,+∞).

所以答案是:(0,1)∪(100,+∞).

【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设{ an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn , 若{ cn}是1,1,2,…,求数列{ cn}的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的图象为C,则如下结论中正确的是(写出所有正确结论的编号).
①图象C关于直线 对称;
②图象C关于点 对称;
③函数f(x)在区间 内是减函数;
④把函数 的图象上点的横坐标压缩为原来的一半(纵坐标不变)可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】欧巴老师布置给时镇同学这样一份数学作业:在同一个直角坐标系中画出四个对数函数的图象,使它们的底数分别为 .时镇同学为了和暮烟同学出去玩,问大英同学借了作业本很快就抄好了,详见如图.第二天,欧巴老师当堂质问时镇同学:“你画的四条曲线中,哪条是底数为e的对数函数图象?”时镇同学无言以对,憋得满脸通红,眼看时镇同学就要被欧巴老师训斥一番,聪明睿智的你能不能帮他一把,回答这个问题呢?曲线才是底数为e的对数函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x,y的方程C:x2+y2﹣2x﹣4y+m=0
(1)当方程C表示圆时,求m的取值范围;
(2)若圆C与直线l1:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(3)在(2)条件下,若圆C上存在四点到直线l2:x﹣2y+b=0的距离均为 ,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈(0, ),β∈(0, ),且满足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记正方形ABCD四条边的中点为S,M,N,T,连接四个中点得小正方形SMNT.将正方形ABCD,正方形SMNT绕对角线AC旋转一周得到的两个旋转体的体积依次记为V1 , V2 , 则V1:V2=(

A.8:1
B.2:1
C.4:3
D.8:3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x﹣lnx(x>0),则函数f(x)(
A.在区间(0,1)内有零点,在区间(1,+∞)内无零点
B.在区间(0,1)内有零点,在区间(1,+∞)内有零点
C.在区间(0,3),(3,+∞)均无零点
D.在区间(0,3),(3,+∞)均有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,前n项和Sn满足条件 =4,n=1,2,…
(1)求数列{an}的通项公式和Sn
(2)记bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案