ÒÑÖªÊýÁÐ{an}Âú×ãa1=a£¬an+1=1+Êýѧ¹«Ê½ÎÒÃÇÖªµÀµ±aÈ¡²»Í¬µÄֵʱ£¬µÃµ½²»Í¬µÄÊýÁУ¬Èçµ±a=1ʱ£¬µÃµ½ÎÞÇîÊýÁУº1£¬2£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½¡­£»µ±a=-Êýѧ¹«Ê½Ê±£¬µÃµ½ÓÐÇîÊýÁУº-Êýѧ¹«Ê½£¬-1£¬0£®
£¨¢ñ£©Çóµ±aΪºÎֵʱa4=0£»
£¨¢ò£©ÉèÊýÁÐ{bn}Âú×ãb1=-1£¬bn+1=Êýѧ¹«Ê½£¨n¡ÊN+£©£¬ÇóÖ¤aÈ¡ÊýÁÐ{bn}ÖеÄÈÎÒ»¸öÊý£¬¶¼¿ÉÒԵõ½Ò»¸öÓÐÇîÊýÁÐ{an}£»
£¨¢ó£©ÈôÊýѧ¹«Ê½£¼an£¼2£¨n¡Ý4£©£¬ÇóaµÄÈ¡Öµ·¶Î§£®

½â£º£¨I£©½â·¨1£º¡ßan+1=1+£¬¡àan=£¬¡ßa4=0£¬¡àa3=-1£¬a2=-£¬a=a1=-£»
½â·¨2£º¡ßa1=a£¬an+1=1+£¬¡àa2=£®a3=£¬a4=£¬¡ßa4=0£¬¡àa=-£®
£¨II£©¡ßbn+1=£¬¡àbn=+1£¬
ÈôaÈ¡ÊýÁÐ{bn}µÄÒ»¸öÊýbn£¬¼´a=bn£¬Ôòa2=1+=1+=bn-1£¬a3=1+=1+=bn-2£¬
¡àan-1=b1=-1£¬¡àan=1+=0
ËùÒÔÊýÁÐ{an}Ö»ÄÜÓÐnÏîΪÓÐÇîÊýÁУ®
£¨III£©½â·¨Ò»£ºÒòΪ£¼an£¼2£¨n¡Ý4£©?£¨n¡Ý5£©??£¼an-1£¼2£¨n¡Ý5£©
ËùÒÔ£¼an£¼2£¨n¡Ý4£©?£¼a4£¼2?£¼£¼2?a£¾0
Õâ¾ÍÊÇËùÇóµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨I£©½â·¨1£ºÓÉÉèÌõ¼þÖªan=£¬ÓÉa4=0£¬µ¼³öa3=-1£¬½ø¶øµ¼³öa2=-£¬ÓÉ´Ë¿ÉÖªa=a1=-£®
½â·¨2£ºÓÉa1=a£¬an+1=1+£¬¿ÉÒÔÍƵ¼³öa4=0£¬ÓÉ´Ë¿ÉÖªa=-£®
£¨II£©ÓÉbn+1=£¬Öªbn=+1£¬Èôa=bn£¬ÔòÓÉÌâÉèÌõ¼þÄܹ»ÍƳöan=1+=0ËùÒÔÊýÁÐ{an}Ö»ÄÜÓÐnÏîΪÓÐÇîÊýÁУ®
£¨III£©ÓÉÌâÉèÌõ¼þ¿ÉÖª£¨n¡Ý5£©£¬ÓÉ´ËÄܹ»ÍƳöaµÄÈ¡Öµ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ¼ÆË㣬±ÜÃâ´íÎó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1ÇÒan+1=
3+4an
12-4an
£¬ n¡ÊN*
£®
£¨1£©ÈôÊýÁÐ{bn}Âú×㣺bn=
1
an-
1
2
(n¡ÊN*)
£¬ÊÔÖ¤Ã÷ÊýÁÐbn-1ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{anbn}µÄÇ°nÏîºÍSn£»
£¨3£©ÊýÁÐ{an-bn}ÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚÇó³ö£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ã
1
2
a1+
1
22
a2+
1
23
a3+¡­+
1
2n
an=2n+1
Ôò{an}µÄͨÏʽ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=
3
2
£¬ÇÒan=
3nan-1
2an-1+n-1
£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£º¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬²»µÈʽa1•a2•¡­an£¼2•n£¡

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãan+1=|an-1|£¨n¡ÊN*£©
£¨1£©Èôa1=
54
£¬Çóan£»
£¨2£©Èôa1=a¡Ê£¨k£¬k+1£©£¬£¨k¡ÊN*£©£¬Çó{an}µÄÇ°3kÏîµÄºÍS3k£¨ÓÃk£¬a±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•±±¾©Ä£Ä⣩ÒÑÖªÊýÁÐ{an}Âú×ãan+1=an+2£¬ÇÒa1=1£¬ÄÇôËüµÄͨÏʽanµÈÓÚ
2n-1
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸