精英家教网 > 高中数学 > 题目详情
已知a 
1
2
+a -
1
2
=3(a>0),求
a
3
2
-a-
3
2
a
1
2
-a-
1
2
的值.
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:a
1
2
=m>0,a-
1
2
=n>0,a 
1
2
+a -
1
2
=3(a>0),可得m+n=3.再利用立方差公式即可得出.
解答: 解:令a
1
2
=m>0,a-
1
2
=n>0,
∵a 
1
2
+a -
1
2
=3(a>0),∴m+n=3.
a
3
2
-a-
3
2
a
1
2
-a-
1
2
=
m3-n3
m-n
=m2+mn+n2=(m+n)2-mn=32-1=8.
点评:本题考查了指数运算法则、乘法公式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2+ax+1图象上一点P到直线y=x的距离的最小值为
2
2
,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x2-1)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=-2x+k的图象与方程x|x|+
y|y|
4
=1的曲线恰好有两个公共点,则实数k的值是(  )
A、[0,2
2
]
B、[0,2
2
C、(0,2
2
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图OA1=1,直角三角形OAnAn+1(n=1,2,3…)的直角边AnAn+1=
n
,记an=OAn,则数列{an}的通项公式为(  )
A、an=
n2+n-1
2
B、an=
n2-n+2
2
C、an=
n2-n+2
2
D、an=
n2+n-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:2x-3y+2=0和l2:3x-2y+3=0,有一动圆(圆心和半径都动)与l1、l2都相交,并且L1,L2被圆截得的弦长分别是定值26,24,则圆心的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

比值
logaN
logaMN
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别为内角A、B、C的对边,已知a=
2
bsin(C+
π
4
).
(1)若△ABC的外接圆半径R=2
2
,求b;
(2)若△ABC的面积为
2
,求b的最小值.

查看答案和解析>>

同步练习册答案