精英家教网 > 高中数学 > 题目详情
11.已知l为一条直线,α,β为两个不同的平面,则下列说法正确的是(  )
A.若l∥α,α∥β,则l∥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,α⊥β,则l⊥βD.若l⊥α,α∥β,则l⊥β

分析 对4个选项分别进行判断,即可得出结论.

解答 解:A、若l∥α,α∥β,则l∥β或l?β,不正确;
B、若α⊥β,l⊥α,则l⊥β或l?β,不正确;
C、若l∥α,α⊥β,则l、β位置关系不定,不正确;
D、若l⊥α,α∥β,根据平面与平面平行的性质,可得l⊥β,正确.
故选D.

点评 本题考查空间线面、面面位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}对任意的n∈N*满足:an+2+an>2an+1,则称数列{an}为“T数列”.
(Ⅰ)求证:数列{2n}是“T数列”;
(Ⅱ)若${a_n}={n^2}•{({\frac{1}{2}})^n}$,试判断数列{an}是否是“T数列”,并说明理由;
(Ⅲ)若数列{an}是各项均为正的“T数列”,求证:$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果正方体、球与等边圆柱(圆柱底面圆的直径与高相等)的体积相等,设它们的表面积依次为S1,S2,S3,则S1,S2,S3大小关系为S2<S3<S1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx,h(x)=ax(a∈R).
(1)求函数y=-af(x)-h(x)+x2+2x的单调区间:
(2)是否存在实数m,使得对任意的$x∈({\frac{1}{2},+∞})$,都有函数$y=f(x)+\frac{m}{x}$的图象在$g(x)=\frac{e^x}{x}$的图象的下方?若存在,请求出整数m的最大值;若不存在,请说理由:(参考数据:$ln2=0.6931,\sqrt{e}=1.6487,\root{3}{e}=1.3956$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则A∪(∁UB)=(  )
A.{1}B.{2,3}C.{1,2,4}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算:${log_2}sin{15^0}-{log_{\frac{1}{2}}}sin{75^0}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随着旅游业的发展,玉石工艺品的展览与销售逐渐成为旅游产业文化的重要一环.某    工艺品厂的日产量最多不超过15件,每日产品废品率p与日产量x(件)之间近似地满   足关系式$P=\left\{\begin{array}{l}\frac{2}{12-x},1≤x≤9\\ \frac{{{x^2}+20}}{480},10≤x≤15\end{array}\right.({x∈{N^*}})$,(日产品废品率=$\frac{日废品量}{日产量}×100%$)
已知每生产一件正品可赢利2千元,而生产一件废品亏损1千元.
(1)将该厂日利润y(千元)表示为日产量x(件)的函数;
(2)当该厂的日产量为多少件时,日利润最大?最大日利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点F为抛物线y2=2px(p>0)的焦点,点M(2,m)在抛物线E上,且|MF|=3.
(1)求抛物线E的方程;
(2)过x轴正半轴上一点N(a,0)的直线与抛物线E交于A,B两点,若OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点是(2,0),则其渐近线的方程为(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±3y=0D.3x±y=0

查看答案和解析>>

同步练习册答案