精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=-|x|,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(  )
A.(-2,0]B.(0,2]C.(-∞,4]D.[4,+∞)

分析 求出f(x),g(x)的值域,则f(x)的值域为g(x)的值域的子集.

解答 解:f(x)=-|x|≤0,∴f(x)的值域是(-∞,0].设g(x)的值域为A,
∵对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),
∴(-∞,0]⊆A.
设y=ax2-4x+1的值域为B,
则(0,1]⊆B.
由题意当a=0时,上式成立.
当a>0时,△=16-4a≥0,解得0<a≤4.
当a<0时,ymax=$\frac{4a-16}{4a}$≥1,即1-$\frac{4}{a}$≥1恒成立.
综上,a≤4.
故选:C.

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意对数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知正数数列{an}的前n项和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,且过点$({2,\sqrt{3}}))$,直线l1:y=kx+m(m>0)与圆C2:(x-1)2+y2=1相切且与椭圆C1交于A,B两点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合A={0,1,2,4},B={1,2,3},则A∩B=(  )
A.{0,1,2,3,4}B.{0,1}C.{0,1,4}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|-2≤x≤2},B={x|x>1}
(1)求A∩B,A∪B,(∁uB)∩A;
(2)设集合M={x|a<x<a+6},且A⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1(a>0)的长轴长为4,则C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,所得函数图象的一个对称中心为(  )
A.$(\frac{7π}{12},0)$B.$(\frac{π}{6},0)$C.$(\frac{5π}{8},0)$D.$(\frac{2π}{3},-3)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分别为B1C1,AA1的中点
(1)求证:AB⊥平面AA1C1C
(2)判断MN与平面ABC1的位置关系,求四面体ABC1M的体积.

查看答案和解析>>

同步练习册答案