精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

【答案】1 .2.

【解析】试题分析:(1)利用频率分布直方图中各矩形的面积和为1,可以得到.再计算出各组内直径的频数,就能计算出平均利润.(2)中的问题是一个古典概型,它的基本事件的总数为,而至多有一件产品的直径位于区间的事件的总数是7,从而所求概率为.

解析:

(1)由频率分布直方图得,所以直径位于区间的频数为位于区间的频数为位于区间的频数为位于区间的频数为生产一件 产品的平均利润为(元).

(2)由频率分布直方图得:直径位于区间的频率之比为应从直径位于区间的产品中抽取件产品,记为从直径位于区间的产品中抽取件产品,记为,从中随机抽取两件,所有可能的取法有种,两件产品中至多有一件产品的直径位于区间内的取法有种.∴所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】方程有两个不等的负根,方程无实根,若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题椭圆C1 表示的是焦点在轴上的椭圆,命题,直线与椭圆C2 恒有公共点.

(1)若命题“”是假命题,命题“”是真命题,求实数的取值范围.

(2)若假时,求椭圆C1椭圆C2的上焦点之间的距离d的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面,是直线,给出下列命题:

,则

,则

如果是异面直线,则相交;

,且,则,且

其中正确确命题的序号是_____(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求的单调区间;

2若对,都有成立,求的取值范围;

3时,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足.

(1)求数列的通项公式;

(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.

写出y关于r的函数表达式,并求该函数的定义域;

求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 为棱中点.

I)求证: 平面

II)求证: 平面

III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形和四边形所在的平面互相垂直.

)求证: 平面

)求证: 平面

)在直线上是否存在点,使得平面?并说明理由.

查看答案和解析>>

同步练习册答案