分析 由题意可知$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{2}$,从而写出Sn=n+$\frac{n(n-1)}{2}$•$\frac{3}{2}$=$\frac{3{n}^{2}+n}{4}$,从而解得.
解答 解:∵an=2an-1+3•2n-1,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+$\frac{3}{2}$,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{2}$,
又∵$\frac{{a}_{1}}{2}$=1,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$}是以1为首项,$\frac{3}{2}$为公差的等差数列,
∴Sn=n+$\frac{n(n-1)}{2}$•$\frac{3}{2}$=$\frac{3{n}^{2}+n}{4}$,
故$\frac{3{n}^{2}+n}{4}$<20,且n∈N*,
故n=1,2,3,4;
故答案为:{1,2,3,4}.
点评 本题考查了数列的化简与运算及等差数列的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${P}_{6}^{6}$ | B. | ${P}_{4}^{4}$•${P}_{3}^{3}$ | ||
C. | ${P}_{6}^{6}$-${P}_{4}^{4}$•${P}_{3}^{3}$ | D. | ${P}_{6}^{6}$-${P}_{3}^{3}•$${P}_{3}^{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com