精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,底面为直角三角形∠ACB=90°,AC=
2
,BC=CC1=1,P是BC1上一动点,则A1P+PC的最小值是(  )
分析:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,不难看出CP+PA1的最小值是A1C的连线.(在BC1上取一点与A1C构成三角形,因为三角形两边和大于第三边)由余弦定理即可求解.
解答:解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,
连A1C,则A1C的长度就是所求的最小值.
通过计算可得∠A1C1P=90°又∠BC1C=45°
∴∠A1C1C=135°
由余弦定理可求得A1C=
5

故选B.
点评:本题考查棱柱的结构特征,余弦定理的应用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案