精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且f(﹣x)=f(2+x),当|x1﹣1|<|x2﹣1|时,有(
A.f(2﹣x1)≥f(2﹣x2
B.f(2﹣x1)=f(2﹣x2
C.f(2﹣x1)>f(2﹣x2
D.f(2﹣x1)≤f(2﹣x2

【答案】A
【解析】解:①若f(x)=c,则f'(x)=0,此时(x﹣1)f'(x)≤0和y=f(x+1)为偶函数都成立,
此时当|x1﹣1|<|x2﹣1|时,恒有f(2﹣x1)=f(2﹣x2).
②若f(x)不是常数,因为函数y=f(x+1)为偶函数,所以y=f(x+1)=f(﹣x+1),
即函数y=f(x)关于x=1对称,所以f(2﹣x1)=f(x1),f(2﹣x2)=f(x2).
当x>1时,f'(x)≤0,此时函数y=f(x)单调递减,当x<1时,f'(x)≥0,此时函数y=f(x)单调递增.
若x1≥1,x2≥1,则由|x1﹣1|<|x2﹣1|,得x1﹣1<x2﹣1,即1≤x1<x2 , 所以f(x1)>f(x2).
同理若x1<1,x2<1,由|x1﹣1|<|x2﹣1|,得﹣(x1﹣1)<﹣(x2﹣1),即x2<x1<1,所以f(x1)>f(x2).
若x1 , x2中一个大于1,一个小于1,不妨设x1<1,x2≥1,则﹣(x1﹣1)<x2﹣1,
可得1<2﹣x1<x2 , 所以f(2﹣x1)>f(x2),即f(x1)>f(x2).
综上有f(x1)>f(x2),即f(2﹣x1)>f(2﹣x2),
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若命题p:x∈R,cosx≤1,则p(
A.x0∈R,cosx0>1
B.x∈R,cosx>1
C.x∈R,cos≤1
D.x0∈R,cosx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题“若a>﹣3,则a>0”以及它的逆命题、否命题、逆否命题中,真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果点P(﹣sinθ,cosθ)位于第三象限,那么角θ所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间直角坐标系中,点P(1,3,6)关于x轴对称的点的坐标是(
A.(1,3,﹣6)
B.(﹣1,3,﹣6)
C.(﹣1,﹣3,6)
D.(1,﹣3,﹣6)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|4≤x<8,x∈R},B={x|6<x<9,x∈R},C={x|x>a,x∈R}.
(1)求A∪B;
(2)(UA)∩B;
(3)若A∩C=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,2x>x2 , 命题q:x0∈R,x0﹣2>0,则下列命题中为真命题的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果两个球的体积之比为8:27,那么两个球的表面积之比为(  )
A.8:27
B.2:3
C.4:9
D.2:9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若角α的终边上有一点P(0,3),则下列式子无意义的是(  )
A.tanα
B.sinα
C.cosα
D.sinαcosα

查看答案和解析>>

同步练习册答案