精英家教网 > 高中数学 > 题目详情
9.如图,三棱锥A-BCD中,BC⊥CD,AD⊥平面BCD,E、F分别为BD、AC的中点.
(I)证明:EF⊥CD;
(II)若BC=CD=AD=1,求点E到平面ABC的距离.

分析 (I)取CD的中点G,连接EG,FG,证明CD⊥平面EFG,即可证明:EF⊥CD;
(II)利用等体积方法,求点E到平面ABC的距离.

解答 (I)证明:取CD的中点G,连接EG,FG,
∵E为BD的中点,∴EG∥BC,
∵BC⊥CD,∴EG⊥CD,
同理FG∥AD,AD⊥平面BCD,∴FG⊥平面BCD,∴FG⊥CD,
∵EG∩FG=G,∴CD⊥平面EFG,
∴EF⊥CD;
(II)解:S△ABC=$\frac{1}{2}AC•BC$=$\frac{\sqrt{2}}{2}$,S△BCE=$\frac{1}{2}BE•CE$=$\frac{1}{4}$,
设点E到平面ABC的距离为h,则$\frac{1}{3}×\frac{1}{4}×1=\frac{1}{3}×\frac{\sqrt{2}}{2}h$,∴h=$\frac{\sqrt{2}}{4}$,
即点E到平面ABC的距离为$\frac{\sqrt{2}}{4}$.

点评 本题考查线面垂直的判定与性质,考查等体积法求点E到平面ABC的距离,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“$\frac{1}{2}$一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有(  )
A.ω=$\frac{2π}{15}$,A=3B.ω=$\frac{2π}{15}$,A=5C.ω=$\frac{15π}{2}$,A=5D.ω=$\frac{15π}{2}$,A=3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},则A∩∁UB=(  )
A.{1}B.{1,3}C.{1,3,6}D.{2,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.高一年级某班共有学生64人,其中女生28人,现用分层抽样的方法,选取16人参加一项活动,则应选取男生人数是(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{2x}{{2}^{x}+1}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}前n项和为Sn,且S3=8,S6=9,则公比q=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案