精英家教网 > 高中数学 > 题目详情
11.当圆C1:x2+y2-6x-6y+2=0与C2:x2+y2+2x-8=0相交于A,B.
(1)两圆交线AB所在的直线方程是4x+3y-5=0;
(2)过交点A,B的圆的方程可设为(x2+y2-6x-6y+2)+λ(x2+y2+2x-8)=0(λ∈R).

分析 (1)在圆系方程中,取λ=-1可得过两圆交线AB所在的直线方程.
(2)直接由圆系方程可设过交点A,B的圆的方程.

解答 解:圆C1:x2+y2-6x-6y+2=0、圆C2:x2+y2+2x-8=0.
(1)两圆交线AB所在的直线方程是(x2+y2-6x-6y+2)-(x2+y2+2x-8)=0.
即4x+3y-5=0;
(2)过交点A,B的圆的方程可设为(x2+y2-6x-6y+2)+λ(x2+y2+2x-8)=0(λ∈R).
故答案为:4x+3y-5=0;(x2+y2-6x-6y+2)+λ(x2+y2+2x-8)=0(λ∈R).

点评 本题考查圆与圆的位置关系,考查了圆系方程的设法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.AB是过椭圆b2x2+a2y2=a2b2的中心弦,F(c,0)为它的右焦点,则△FAB面积的最大值是bc.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列四个说法:
①一个命题的逆命题为真,则它的逆否命题一定为真;
②若k>0,则方程x2+2x-k=0有实数根;
③“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要条件;
④设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分而不必要条件.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上两个相异的、不关于坐标轴对称的点.求线段AB的中垂线在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各函数中,在(0,+∞)内为增函数的是(  )
A.y=-2x+1B.y=-x2C.y=x-2D.y=2x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四棱锥P-ABCD的底面ABCD为平行四边形,M为线段PC上的点,且满足CM=$\frac{1}{2}$MP.若$\overrightarrow{CM}$=-$\frac{1}{3}$$\overrightarrow{AB}$+m$\overrightarrow{AD}$+n$\overrightarrow{AP}$,则m+n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列f(x)=x4+(2-a)x2+x2(lnx)2+1,x>0,若f(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,4]C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三棱椎O-ABC中,OA=OB=OC=1,∠AOB=90°,OC⊥平面AOB,D为AB的中点,则OD与平面OBC的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}中,a1=6,且当n≥2时,$\frac{1}{3}$an=an-1+$\frac{1}{n}$an-1
(1)求证:数列{$\frac{{a}_{n}}{n+1}$}是等比数列;
(2)若对任意n∈N*,不等式3n2-2n-5<(2-λ)an恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案