9£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=sin¦È£¬Ö±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¨µãMÔÚµãNµÄÉÏ·½£©£®
£¨¢ñ£©Èôa=0£¬ÇóM£¬NÁ½µãµÄ¼«×ø±ê£»
£¨¢ò£©ÈôP£¨a£¬0£©£¬ÇÒ$|PM|+|PN|=8+2\sqrt{3}$£¬ÇóaµÄÖµ£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊýt£¬ÇóµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬¸ù¾Ýx=¦Ñcos¦È¡¢y=¦Ñsin¦È£¬ÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬ÁªÁ¢·½³Ì×éÇó³öM¡¢NµÄÖ±½Ç×ø±ê·½³Ì£¬ÔÚת»¯Îª¼«×ø±ê£»
£¨¢ò£©ÉèM£¬N¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬${t_1}+{t_2}=4a+2\sqrt{3}£¾0$£¬${t_1}{t_2}=4{a^2}£¾0$¼´¿É£®

½â´ð ½â£º£¨¢ñ£©¡ß$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÏûÈ¥²ÎÊýt£¬ÇóµÃÖ±ÏßlµÄÆÕͨ·½³Ì$\sqrt{3}x+y=0$
¸ù¾Ýx=¦Ñcos¦È¡¢y=¦Ñsin¦È£¬ÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2=y£¬¡­£¨3·Ö£©
¡à$\left\{\begin{array}{l}{x^2}=y\\ \sqrt{3}x+y=0\end{array}\right.$½âµÃ$\left\{\begin{array}{l}x=0\\ y=0\end{array}\right.$»ò$\left\{\begin{array}{l}x=-\sqrt{3}\\ y=3\end{array}\right.$
¡àM£¬NÁ½µãµÄ¼«×ø±ê·Ö±ðΪ$£¨2\sqrt{3}£¬\;\frac{2¦Ð}{3}£©$¡¢£¨0£¬0£©¡­£¨6·Ö£©
£¨¢ò£©µãP£¨a£¬0£©ÏÔÈ»ÔÚÖ±ÏßlÉÏ£¬
°Ñ$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨a¡Ý0£¬tΪ²ÎÊý£©´úÈëx2=y²¢»¯¼ò£¬µÃ${t^2}-£¨4a+2\sqrt{3}£©t+4{a^2}=0$£®
ÉèM£¬N¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
¡ßa£¾0
¡à${t_1}+{t_2}=4a+2\sqrt{3}£¾0$£¬${t_1}{t_2}=4{a^2}£¾0$
¡àt1£¾0£¬t2£¾0
¡à$|PM|+|PN|={t_1}+{t_2}=4a+2\sqrt{3}=8+2\sqrt{3}$
¡àa=2£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢ÆÕͨ·½³ÌµÄת»¯£¬¼°Ö±ÏߵIJÎÊý·½³ÌÖвÎÊýµÄº¬Ò壬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚf1£¨x£©=x${\;}^{\frac{1}{2}}$£¬f2£¨x£©=x2£¬f3£¨x£©=2x£¬f4£¨x£©=log${\;}_{\frac{1}{2}}$xËĸöº¯ÊýÖУ¬µ±x1£¾x2£¾1ʱ£¬Ê¹$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£¼f£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©³ÉÁ¢µÄº¯ÊýÊÇf1£¨x£©=x${\;}^{\frac{1}{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑ֪ȫ¼¯U={x|xÊÇСÓÚ9µÄÕýÕûÊý}£¬M={1£¬3£¬5£¬7}£¬N={5£¬6£¬7}£¬Ôò∁U£¨M¡ÈN£©=£¨¡¡¡¡£©
A£®{5£¬7}B£®{2£¬4}C£®{2£¬4£¬8}D£®{1£¬3£¬5£¬6£¬7}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁк¯ÊýÖÐÓ뺯Êýy=x0±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=1B£®y=$\frac{£¨\sqrt{x}£©^{2}}{x}$C£®y=$\frac{x}{x}$D£®y=$\frac{|x|+1}{|x|+1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬µ±x¡Ý0ʱf£¨x£©=3x+m£¨mΪ³£Êý£©£¬Ôòf£¨-3£©=-26£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÕýÊÓͼºÍ²àÊÓͼ¶¼ÊǵȱßÈý½ÇÐΣ¬ÇҸü¸ºÎÌåµÄËĸöµãÔÚ¿Õ¼äÖ±½Ç×ø±êϵO-xyzÖеÄ×ø±ê·Ö±ðÊÇ£¨0£¬0£¬0£©£¬£¨2£¬0£¬0£©£¬£¨0£¬2£¬0£©£¬ÔòµÚÎå¸ö¶¥µãµÄ×ø±ê¿ÉÄÜΪ£¨¡¡¡¡£©
A£®£¨1£¬1£¬1£©B£®£¨1£¬1£¬$\sqrt{2}$£©C£®£¨1£¬1£¬$\sqrt{3}$£©D£®£¨2£¬2£¬$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÏÂÁÐÃüÌ⣺
¢Ùº¯Êý$y=sin£¨2x+\frac{¦Ð}{3}£©$µÄµ¥µ÷¼õÇø¼äΪ$[k¦Ð+\frac{¦Ð}{12}£¬k¦Ð+\frac{7¦Ð}{12}]£¬k¡ÊZ$£»
¢Úº¯Êý$y=\sqrt{3}cos2x-sin2x$ͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{¦Ð}{6}£¬0£©$£»
¢Ûº¯Êýy=cosxµÄͼÏó¿ÉÓɺ¯Êý$y=sin£¨x+\frac{¦Ð}{4}£©$µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»µÃµ½£»
¢ÜÈô·½³Ì$sin£¨2x+\frac{¦Ð}{3}£©-a=0$ÔÚÇø¼ä$[0£¬\frac{¦Ð}{2}]$ÉÏÓÐÁ½¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬Ôò${x_1}+{x_2}=\frac{¦Ð}{6}$£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ù¢Ú¢Ü£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª³¤·½ÌåABCD-A1B1C1D1ÄÚ½ÓÓÚÇòO£¬µ×ÃæABCDÊÇÕý·½ÐΣ¬EΪAA1µÄÖе㣬OA¡ÍƽÃæBDE£¬Ôò$\frac{{A{A_1}}}{AB}$=$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÃüÌâp£º?x¡Ê£¨1£¬+¡Þ£©£¬2x-1-1£¾0£¬ÔòÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®©VpΪ£º?x¡Ê£¨1£¬+¡Þ£©£¬2x-1-1¡Ü0B£®©VpΪ£º?x¡Ê£¨1£¬+¡Þ£©£¬2x-1-1£¼0
C£®©VpΪ£º?x¡Ê£¨-¡Þ£¬1]£¬2x-1-1£¾0D£®©VpÊǼÙÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸