【题目】某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:
(Ⅰ)用该实验来估测小球落入4号容器的概率,若估测结果的误差小于,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差)
(Ⅱ)再取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.(计算时采用概率的理论值)
【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.
【解析】
(Ⅰ)求出小球落入4号容器的概率的理论值,问题得解.
(Ⅱ)直接利用二项分布求解。
解:(Ⅰ)小球落入4号容器的概率的理论值为.
小球落入4号容器的概率的估测值为.
误差为,故该实验是成功的.
(Ⅱ)由(Ⅰ)可得,每个小球落入4号容器的概率为,未落入4号容器的概率为.,
,
,
,
.
的分布列为
| 0 | 1 | 2 | 3 | ||
|
|
|
|
|
反馈点数 | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析发现,可用线性回归模型拟合当地该商品一天销量(百件)与该天返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;
(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间(百分比) | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
将对返还点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程,其中,;②.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若,b+c=5,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;
(Ⅱ)设点的坐标为,直线交曲线于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地月日到日日均值(单位:)的统计数据,则下列叙述不正确的是( )
A.从日到日,日均值逐渐降低
B.这天的日均值的中位数是
C.这天中日均值的平均数是
D.从这天的日均监测数据中随机抽出一天的数据,空气质量为一级的概率是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知过点的椭圆的离心率为,左顶点和上顶点分别为A,B.
(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com