精英家教网 > 高中数学 > 题目详情
在△ABC中,a=
6
,b=2,c=
3
+1,求A、B、C及S△ABC
分析:三角形中,利用余弦定理可得 cosA 的值,可得角A的值,同理求出角B,再由内角和定理求出角C,由S△ABC =
1
2
bcsinA,运算求得结果.
解答:解:由余弦定理可得 cosA=
b2+c2-a2
2bc
=
22+(
3
+1)2-(
6
)2
2×2×(
3
+1)
=
1
2
,∴A=60°.
同理可求 cosB=
a2+c2-b2
2ac
=
2
2
,∴B=45°.
∴C=180°-(A+B)=750
∴S△ABC =
1
2
bcsinA=
1
2
×2×(
3
+1)•sin60°=
3+
3
2
点评:本题主要考查余弦定理的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B、C不重合),且丨
AB
|2=|
AD
|2+
BD
DC
,则∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=6,b=4,C=30°,则△ABC的面积是(  )
A、12
B、6
C、12
3
D、8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
∠C=
π
2
|AC|=
3
,M是AB的中点,那么(
CA
-
CB
)•
CM
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B,C不重合)且|
AB
|2=|
AD
|2+
BD
DC
,则∠B
=(  )

查看答案和解析>>

同步练习册答案