精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x),若存在常数s,t,使得取定义域内的每一个x的值,都有f(x)=﹣f(2s﹣x)+t,则称f(x)为“和谐函数”,给出下列函数 ①f(x)= ②f(x)=(x﹣1)2 ③f(x)=x3+x2+1 ④f(x)=ln( ﹣3x)cosx,其中所有“和谐函数”的序号是(
A.①③
B.②③
C.①②④
D.①③④

【答案】D
【解析】解:对于函数f(x),若存在常数s,t,使得x取定义域内的每一个值,都有f(x)=﹣f(2s﹣x)+t,知,函数f(x)的图象关于(s,t)对称,
对于①,f(x)= = ,函数f(x)的图象关于(﹣1,1)对称,函数为“和谐函数”;
对于②,f(x)=(x﹣1)2 , 函无对称数中心,函数不是“和谐函数”;
对于③,f(x)=x3+x2+1,函数f(x)关于( )中心对称图形,函数是“和谐函数”;
对于④,f(x)=ln( ﹣3x)cosx为奇函数,图象关于(0,0)对称,函数为“和谐函数”.
∴为“和谐函数”的是①③④.
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】怀化某中学对高三学生进行体质测试,已知高三某个班有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm)
男生成绩在195cm以上(包含195cm)定义为“合格”,成绩在195cm以下(不包含195cm)定义为“不合格”,女生成绩在185cm以上(包含185cm)定义为“合格”,成绩在185cm以下(不包含185cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中按成绩合格与否进行分层抽样,抽取6人,求抽取成绩为“合格”的学生人数;
(3)若从(2)中抽取的6名学生中任意选取4个人参加复试,求这4人中至少3人合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c均为正数.
(Ⅰ)求证:a2+b2+( 2≥4
(Ⅱ)若a+4b+9c=1,求证: ≥100.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.

1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)从6名同学中选4名同学组成一个代表队,参加4×400米接力比赛,问有多少种参赛方案?

(2)从6名同学中选4名同学参加场外啦啦队,问有多少种选法?

(3) 4名同学每人可从跳高、跳远、短跑三个项目中,任选一项参加比赛,问有多少种参赛方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案