精英家教网 > 高中数学 > 题目详情
13.已知圆x2+(y-1)2=1,在圆上任意一点P(x,y),有x+y+m≥0恒成立,求m的取值范围.

分析 先设x=cosα,y-1=sinα,再把不等式x+y+m≥0恒成立转化为m≥-(x+y)恒成立,进而利用辅助角公式求-(x+y)的最小值即可得到结论.

解答 解:由题设:x=cosα,y-1=sinα,
则 x+y=cosα+sinα+1=$\sqrt{2}$sin(α+$\frac{π}{4}$)+1∈[-$\sqrt{2}$+1,$\sqrt{2}$+1].
∵不等式x+y+m≥0恒成立
∴m≥-(x+y)恒成立;
因为-(x+y)的最大值为:$\sqrt{2}$-1.
∴m≥$\sqrt{2}$-1.

点评 本题主要考查函数的恒成立问题.解决问题的关键在于由不等式x+y+m≥0恒成立转化为m≥-(x+y)恒成立,进而求-(x+y)的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,若sinC=$\frac{3}{5}$,c=3,则△ABC外接圆的半径为(  )
A.5B.$\frac{5}{2}$C.$\frac{25}{4}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈R+,求z=$\sqrt{2x+1}$+$\sqrt{3-2x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(x-$\frac{a}{x}$)(2x+1)4的展开式中各项系数的和为-81,则该展开式中的常数项为-16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在(0,+∞)上的函数f(x)=a•2x+b•3x,其中常数a,b满足ab≠0.
(1)若函数y=g(x)为定义在R上的奇函数,且满足当x>0时,g(x)=f(x),试求函数y=g(x)在R上的解析式;
(2)当b=1时,关于x的不等式f(x+1)>f(x)在x∈(1,+∞)上恒成立,求a的取值范围;
(3)当ab>0时,解关于x的不等式f(ax+1)>f(bx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α∈(π,$\frac{3π}{2}$),cosα=-$\frac{4}{5}$,则tan($\frac{3π}{2}$-α)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.动点P从单位正方形ABCD顶点A开始运动一周,设沿正方形ABCD的运动路程为自变量x,写出P点与A点距离y与x的函数关系式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.现安排甲、乙、丙、丁、戊5名同学参加某志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有1人参加.甲不会开车但能从事其他三项工作,乙、丙、丁、戊都能胜任四项工作,则不同安排方案的种数为180.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.分解因式:
(1)x2+2xy+y2+3x+3y+2;
(2)4x2-14xy+6y2-7x+y-2;
(3)x2-y2-3z2-2xz+4yz;
(4)2y2-5xy+2x2-ay-ax-a2
(5)a2-3b2-3c2+10bc-2ca-2ab.

查看答案和解析>>

同步练习册答案