精英家教网 > 高中数学 > 题目详情

【题目】铜仁市某工厂有25周岁以上(25周岁)工人300名,25周岁以下工人200.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(25周岁)”“25周岁以下分为两组,再将两组工人的日平均生产件数分成5组:[50,60)[60,70)[70,80)[80,90)[90,100]分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组工人的概率;

(2)规定日平均生产件数不少于80件者为生产能手,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为生产能手与工人所在的年龄组有关

K2

【答案】(1) (2) 1.786

【解析】试题分析: 根据分层抽样原理,组合频率分布直方图,求出每组应抽取的人数; 列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较即可。

解析:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40.

所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.053(),记为A1A2A3

25周岁以下组工人有40×0.052(),记为B1B2.

从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1A2)(A1A3)(A2A3)(A1B1)(A1B2)(A2B1)(A2B2)(A3B1)(A3B2)(B1B2).

其中,至少有1“25周岁以下组工人的可能结果共有7种,它们是(A1B1)(A1B2)(A2B1)(A2B2)(A3B1)(A3B2)(B1B2).

故所求的概率P.

(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组中的生产能手有60×0.2515()“25周岁以下组中的生产能手有40×0.37515(),据此可得2×2列联表如下:

生产能手

非生产能手

合计

25周岁以上组

15

45

60

25周岁以下组

15

25

40

合计

30

70

100

所以得K2 ≈1.786.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆 1(a> )的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1x2y2-4x-2y-5=0与圆C2x2y2-6xy-9=0.

(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;

(3)在平面上找一点P,过P点引两圆的切线并使它们的长都等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且

(1)求的值;

(2)设 ,四边形的面积为,求的最值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC△VAB为等边三角形,AC⊥BCAC=BC=OM分别为ABVA的中点.

1)求证:VB∥平面MOC

2)求证:平面MOC⊥平面VAB

3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

2已知,圆轴相交于两点(点在点的右侧).过点任作一条倾斜角不为0的直线与圆相交于两点问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案