精英家教网 > 高中数学 > 题目详情
精英家教网如图,在空间四边形ABCD中,E,F分别是AB,CD的中点.
(1)若AB=BC=CD=AD=AC=BD=2a,求EF的长;
(2)若AD=BC=2a,EF=
3
a
,求异面直线AD与BC所成的角的余弦值.
分析:(1)如图所示.连接EC,ED.利用△ABC是等边三角形可得CE,同理可得ED,再利用等腰三角形的性质和直角三角形的边角关系即可得出.
(2)如图所示,取AC的中点M,连接EM,FM.利用三角形的中位线定理可得EM
.
1
2
BC
FM
.
1
2
AD

因此∠EMF或其补角即为异面直线AD与BC所成的角,在△EFM中,利用余弦定理即可得出.
解答:解:(1)如图所示.精英家教网
连接EC,ED.
∵AB=BC=AC=2a,
∴△ABC是等边三角形.
又AE=EB,∴CE⊥AB.
∴CE=
3
a.
同理DE=
3
a.
在△CED中,∵CE=ED=
3
a,CF=FD=a,
EF=
CE2-CF2
=
2
a

(2)如图所示,取AC的中点M,连接EM,FM.精英家教网
∵E,F分别是AB,CD的中点,
EM
.
1
2
BC
FM
.
1
2
AD

∴∠EMF或其补角即为异面直线AD与BC所成的角,
又AD=BC=2a,
∴EM=FM=a.
在△EFM中,由余弦定理可得:cos∠EMF=
EM2+FM2-EF2
2EM•FM
=
a2×2-(
3
a)2
a2
=-
1
2

∴异面直线AD与BC所成的角的余弦值为
1
2
点评:本题考查了等边三角形和等腰三角形的性质和直角三角形的边角关系、三角形的中位线定理、异面直线所成的角、余弦定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在空间四边形OABC中,M,G分别是BC,AM的中点,设
OA
=
a
OB
=
b
OC
=
c

(1)用基底{
a
 , 
b
 ,
c
}
表示向量
OG

(2)若|
a
|=|
b
|=|
c
|=
3
,且
a
b
c
夹角的余弦值均为
1
3
b
c
夹角为60°,求|
OG
|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且
CF
CB
=
CG
CD
=
2
3
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间四边形OABC中,已知E是线段BC的中点,G为AE的中点,若
OA
OB
OC
分别记为
a
b
c
,则用
a
b
c
表示
OG
的结果为
OG
=
1
2
a
+
1
4
b
+
1
4
c
1
2
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间四边形PABC中,PA⊥面ABC,AC⊥BC,若点A在PB、PC上的射影分别是E、F,求证:EF⊥PB.

查看答案和解析>>

科目:高中数学 来源:2014届江西省高二第四次月考文科数学试卷(解析版) 题型:选择题

如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且,则(  )

(A)EF与GH互相平行

(B)EF与GH异面

(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上

(D)EF与GH的交点M一定在直线AC上

 

查看答案和解析>>

同步练习册答案