【题目】在三棱锥中,和是边长为的等边三角形,,分别是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求三棱锥的体积.
【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)
【解析】本题主要考查直线与平面平行的判定,以及平面与平面垂直的判定和三棱锥的体积的计算,体积的求解在最近两年高考中频繁出现,值得重视.
(1)欲证OD∥平面PAC,根据直线与平面平行的判定定理可知只需证OD与平面PAC内一直线平行,而OD∥PA,PA平面PAC,OD平面PAC,满足定理条件;
(2)欲证平面PAB⊥平面ABC,根据面面垂直的判定定理可知在平面PAB内一直线与平面ABC垂直,而根据题意可得PO⊥平面ABC;
(3)根据OP垂直平面ABC得到OP为三棱锥P-ABC的高,根据三棱锥的体积公式可求出三棱锥P-ABC的体积.
解:(Ⅰ)分别为的中点,
∥
又平面,平面
∥平面. ………………5分
(Ⅱ)连结,
,为中点,,
⊥,.
同理, ⊥,.
又,,
,⊥.
⊥,⊥,,
⊥平面.
又平面,平面⊥平面.…………………10分
(Ⅲ)由(Ⅱ)可知垂直平面
为三棱锥的高,且
. …………………………14分
科目:高中数学 来源: 题型:
【题目】已知等差数列和等比数列满足, , .
(1)求的通项公式;
(2)求和: .
【答案】(1);(2).
【解析】试题分析:(1)根据等差数列的, ,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项 ,公比 的方程组,解得、的值,求出数列的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
从而.
【题型】解答题
【结束】
18
【题目】已知命题:实数满足,其中;命题:方程表示双曲线.
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等。
(1)求第三组的频率;
(2)已知实验班学生成绩在第五组,在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;
(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是的菱形,侧面为正三角形,其所在平面垂直于底面.
(1)若为线段的中点,求证:平面;
(2)若为边的中点,能否在棱上找到一点,使平面平面?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线的方程为.
()在所给坐标系中画出圆锥曲线.
()圆锥曲线的离心率__________.
()如果顶点在原点的抛物线与圆锥曲线有一个公共焦点,且过第一象限,则
(i)交点的坐标为__________.
(ii)抛物线的方程为__________.
(iii)在图中画出抛物线的准线.
()已知矩形各顶点都在圆锥曲线上,则矩形面积的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程.
()若已知方程表示椭圆,则的取值范围为__________.
()语句“”是语句“方程”表示双曲线的(_____________).
A.充分不必要条件 B.必要不充分条件 C.充在条件 D.既不充分也不必要条件
()根据()的结论,以“如果那么”的形式写出一个正确命题,记作命题,则
命题:__________.
()套用量词命题的格式:“, ”或“, ”,改写()中命题,
表述形式为:__________.
()写出()中命题的逆命题,记作命题,则
命题:__________.
()判断()中命题的真假,并陈述判断理由.
命题为__________命题,因为__________.
()若已知方程表示椭圆,则该椭圆两个焦点的坐标分别为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且, , 分别为的中点.
(1)证明: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com