精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)设,且,求证:.

【答案】1)讨论见解析(2)证明见解析

【解析】

1)求出函数的定义域以及函数的导数,然后根据的正负性进行分类讨论,求出函数的单调区间;

2)当时,求出函数的导数,可以确定的单调性,设,可以证明出,根据,可以证明出,根据同角的三角函数关系式可以得到,最后根据余弦函数的单调性进行证明即可.

(1)的定义域为

时,恒成立,上单调递减;

时,由解得,由解得,所以上单调递增,在上单调递减.

综上所述,当时,上单调递减;当时,上单调递增,在上单调递减;

2)当时,,则上单调递增.,且,则,即,所以,可得.因为,所以,所以,即.因为,所以,所以,所以.综上可得,,且,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数的两个零点为

1)求的单调区间;

2)若的极小值为,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市据实际情况主要采取以下四种扶贫方式:第一,以工代赈方式,指政府投资建设基础设施工程,组织贫困地区群众参加工程建设并获得劳务报酬,第二,整村推进方式指以贫困村为具体帮扶对象,帮扶对口到村,资金安排到村,扶贫效益到户,第三,科技扶贫方式,指组织科技人员深入贫困乡村实地指导、技术培训等传授科技知识,第四,移民搬迁方式,指对目前极少数居住在生存条件恶劣、自然资源贫乏地区的特困人口,实行自愿移民,该市为了2020年更好的完成精准扶贫各项任务,2020年初在全市贫困户(分一般贫困户和五特户两类)中随机抽取了5000户就目前的主要四种扶贫方式行了问卷调查,支持每种扶贫方式的结果如表:

调查的贫困户

支持以工代赈户数

支持整村推进户数

支持科技扶贫户数

支持移民搬迁户数

一般贫困户

1200

1600

200

五特户(五保户和特困户)

100

100

已知在被调查的5000户中随机抽取一户支持整村推进的概率为0.36.

(Ⅰ)现用分层抽样的方法在所有参与调查的贫困户中抽取50户进行深入访谈,问应在支持科技扶贫户数中抽取多少户?

(Ⅱ)虽然五特户在全市的贫困户所占比例不大,但本次调查要有意义,其中这次调查的五特户户数不能低于被调查总户数的9.2%,已知,求本次调查有意义的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分104钱,戊分56钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)(

A.乙分8两,丙分8两,丁分8B.乙分82钱,丙分8两,丁分78

C.乙分92钱,丙分8两,丁分68D.乙分9两,丙分8两,丁分7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.

(1)的方程;

(2)若点在圆上,点为坐标原点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,是棱的中点,是侧面上的动点,且平面,记的轨迹构成的平面为

,使得

②直线与直线所成角的正切值的取值范围是

与平面所成锐二面角的正切值为

④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.

其中正确命题的序号是________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的极值;

2)若为整数,,且,不等式成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知.设数列的前n项和为,且.

1)求数列的通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案