精英家教网 > 高中数学 > 题目详情

已知函数(x∈R且x≠1),那么它的反函数为

[  ]

A.(x∈R,且x≠1)

B.(x∈R,且x≠6)

C.(x∈R,且x≠)

D.(x∈R,且x≠-5)

答案:B
解析:

原函数值域

    

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1a
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且g(-
1
2
)-g(1)=f(0)
(1)试求b,c所满足的关系式;
(2)若b=1,F(x)=f(x)+g(x) 在x∈[
1
2
,+∞)为增函数,求a的取值范围.
(3)若b=0,方程f(x)=g(x)在x∈(0,+∞)有唯一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练17练习卷(解析版) 题型:选择题

已知函数f(x)=2sin(ωx+),xR,其中ω>0,-π<≤π.f(x)的最小正周期为6π,且当x=,f(x)取得最大值,(  )

(A)f(x)在区间[-2π,0]上是增函数

(B)f(x)在区间[-3π,-π]上是增函数

(C)f(x)在区间[3π,5π]上是减函数

(D)f(x)在区间[4π,6π]上是减函数

 

查看答案和解析>>

同步练习册答案