【题目】将函数 的图象向左平移 个单位,再向上平移1个单位,得到g(x)的图象.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],则2x1﹣x2的最大值为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求 · 的值;
(2)如果 · =-4,证明直线l必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过圆与直线的交点,且圆上任意一点关于直线 的对称点仍在圆上.
(1)求圆的标准方程;
(2)若圆与轴正半轴的交点为,直线与圆交于两点(异于点),且点满足,,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某初级中学有三个年级,各年级男、女人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 370 | 200 | |
男生 | 380 | 370 | 300 |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求 的值;
(2)用分层抽样的方法在初三年级中抽取一个容量为5的样本,求该样本中女生的人数;
(3)用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 的焦点为 , 是抛物线上横坐标为4,且位于 轴上方的点, 到抛物线准线的距离等于5,过 作 垂直于 轴,垂足为 , 的中点为 .
(1)求抛物线的方程;
(2)若过 作 ,垂足为 ,求点 的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为 ,上顶点为 , 周长为 ,离心率为 .
(1)求椭圆 的方程;
(2)若点 是椭圆 上第一象限内的一个点,直线 过点 且与直线 平行,直线 且 与椭圆 交于 两点,与 交于点 ,是否存在常数 ,使 .若存在,求出 的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com