【题目】从装有个不同小球的口袋中取出个小球(),共有种取法。在这种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有种取法;第二类是某指定的小球被取到,共有种取法。显然,即有等式:成立。试根据上述想法,下面式子(其中)应等于 ( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知圆,直线。
(Ⅰ)求证:直线与圆C恒有两个交点;
(Ⅱ)求出直线被圆C截得的最短弦长,并求出截得最短弦长时的的值;
(Ⅲ)设直线与圆C的两个交点为M,N,且(点C为圆C的圆心),求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了人,按年龄分成5组,第一组: ,第二组: ,第三组: ,第四组: ,第五组: ,得到如图所示的频率分布直方图,已知第一组有6人.
(1)求;
(2)求抽取的人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,a4=2且,数列满足 ,
(1)证明:数列{an}为等差数列;
(2)是否存在正整数,(1<),使得成等比数列,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.
(1)若,求的周长(结果精确到0.01米);
(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图,则下面结论中不正确的是( )
建设前经济收入构成比例 建设后经济收入构成比例
A. 新农村建设后,养殖收入增加了一倍
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,种植收入减少
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“”?“对任意的正数x,2x+≥1”与“对任意的正数x,2x+≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+≥1”一定成立,
即“a=”?“对任意的正数x,2x+≥1”为真命题;
而“对任意的正数x,2x+≥1的”时,可得“a≥”
即“对任意的正数x,2x+≥1”?“a=”为假命题;
故“a=”是“对任意的正数x,2x+≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
11
【题目】如图,四棱锥中, 平面,底面为直角梯形, , , ,点在棱上,且,则平面与平面的夹角的余弦值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的对称轴方程;
(2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若, , 分别是△三个内角, , 的对边, , ,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com