精英家教网 > 高中数学 > 题目详情

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:

消费次第

第1次

第2次

第3次

第4次

≥5次

收费比例

1

0.95

0.90

0.85

0.80

该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:

消费次第

第1次

第2次

第3次

第4次

第5次

频数

60

20

10

5

5

假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

【答案】
(1)解:100位会员中,至少消费两次的会员有40人,所以估计一位会员至少消费两次的概率为p= =0.4.
(2)解:该会员第1次消费时,公司获得利润为200﹣150=50(元),

第2 次消费时,公司获得利润为200×0.95﹣150=40(元),

所以,公司这两次服务的平均利润为 (元).


(3)解:至少消费两次的会员中,消费次数分别为1,2,3,4,5的比例为20:10:5:5=4:2:1:1,所以

抽出的8人中,消费2次的有4人,设为A1,A2,A3,A4,消费3次的有2人,设为B1,B2,消费4次和5次的各有1人,分别设为C,D,从中取2人,取到A1的有:A1A2,A1A3,A1A4,A1B1,A1B2,A1C,A1D 共7种;

去掉A1后,取到A2的有:A2A3,A2A4,A2B1,A2B2,A2C,A2D 共6种;

去掉A1,A2,A3,A4,B1,B2,后,取到C的有:CD 共1种,总的取法有n=7+6+5+4+3+2+1=28种,

其中恰有1人消费两次的取法共有:m=4+4+4+4=16种,

所以,抽出2人中恰有1人费两次的概率为p=


【解析】(1)至少消费两次的会员有40人,根据概率公式p= =0.4.(2)分别求出两次消费为公司获得的利润,然后求平均值即可;(3)根据古典概型的概率求法,利用枚举法求解.
【考点精析】解答此题的关键在于理解分层抽样的相关知识,掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求实数a,b的值.
(2)求z=3a﹣b的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移 个周期后,所得图象对应的函数g(x)的一个单调增区间为(
A.[0,π]
B.
C.
D.[﹣π,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)写出直线l的极坐标方程与曲线C的直角坐标方程;
(Ⅱ)已知与直线l平行的直线l'过点M(1,0),且与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移 个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在 的最大值为(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.

查看答案和解析>>

同步练习册答案