精英家教网 > 高中数学 > 题目详情
给定椭圆 ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
(Ⅰ);(Ⅱ)垂直.

试题分析:(Ⅰ)利用焦点坐标求出,利用短轴上的一个端点到的距离为,求出,解出,写出椭圆方程,通过得到的求出准圆的半径,直接写出准圆方程;(Ⅱ)分情况讨论:①当中有一条直线的斜率不存在时,②当的斜率都存在时.
试题解析:(Ⅰ)由题意可知,则
所以椭圆方程为.                  2分
易知准圆半径为
则准圆方程为.                     4分
(Ⅱ)①当中有一条直线的斜率不存在时,
不妨设的斜率不存在,因为与椭圆只有一个公共点,则其方程为
的方程为时,此时与准圆交于点
此时经过点且与椭圆只有一个公共点的直线是
,显然直线垂直;           6分
同理可证直线的方程为时,直线也垂直.      7分
②当的斜率都存在时,设点,其中.
设经过点与椭圆只有一个公共点的直线为
消去,得.
化简整理得,.  因为
所以有.                10分
设直线的斜率分别为,因为与椭圆只有一个公共点,
所以满足方程
所以,即垂直.                  12分
综合①②知,垂直.                       13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且经过点
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆  
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别为椭圆的两个焦点,点为其短轴的一个端点,若为等边三角形,则该椭圆的离心率为(    )
A.  B. C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是椭圆的左、右焦点,点P在椭圆上,若△为直角三角形,则△的面积等于__   __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  

查看答案和解析>>

同步练习册答案