精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在(0,+)上的非负可导函数,且满足。对任意正数a、b,若a<b,则必有(   )
A.af(b)≤bf(a)B.bf(a)≤af(b)
C.af(a)≤f(b)D. bf(b)≤f(a)
A

试题分析:因为,所以在(0,+)上单调递减,所以
点评:利用导数判断单调性是导数的一个很重要的应用,要熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,问是否存在实数使上取最大值3,最小值-29,若存在,求出的值;不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设时,求函数极大值和极小值;
(2)时讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数为自然对数的底数).
时,求的单调区间;若函数上无零点,求最小值;
若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为  

查看答案和解析>>

同步练习册答案